{"title":"飞行数据兼容性检查的实际示例","authors":"Christian Raab","doi":"10.1007/s13272-023-00687-6","DOIUrl":null,"url":null,"abstract":"Abstract Accurate information about aircraft speed, altitude, and aerodynamic flow angles is essential for evaluating aircraft performance and handling qualities. These quantities are determined from air data measurements taken by sensors normally located near the aircraft cockpit. Since these sensors are affected by the distorted flow field around the fuselage, a correction must be applied. Before the first flight, a set of calibration parameters is usually determined from wind tunnel experiments or CFD calculations. However, the Data Compatibility Check (DCC) method allows a more accurate air data sensor calibration during the certification flight test. This method reconstructs air data quantities from inertial acceleration, angular rate measurements and the flight path. By comparing the reconstructed quantities with the measured ones, the structure and parameters of air data sensor models can be identified. In this paper, an introduction to the data compatibility check method and the setup used in a flight test for system identification is given. The DCC is applied on data gathered from a test campaign with the new DLR research aircraft Dassault Falcon 2000LX ISTAR. Use cases for the calibration of the nose boom airflow vanes and the correction of sensors during large sideslip maneuvers will be presented in this paper.","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical examples for the flight data compatibility check\",\"authors\":\"Christian Raab\",\"doi\":\"10.1007/s13272-023-00687-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Accurate information about aircraft speed, altitude, and aerodynamic flow angles is essential for evaluating aircraft performance and handling qualities. These quantities are determined from air data measurements taken by sensors normally located near the aircraft cockpit. Since these sensors are affected by the distorted flow field around the fuselage, a correction must be applied. Before the first flight, a set of calibration parameters is usually determined from wind tunnel experiments or CFD calculations. However, the Data Compatibility Check (DCC) method allows a more accurate air data sensor calibration during the certification flight test. This method reconstructs air data quantities from inertial acceleration, angular rate measurements and the flight path. By comparing the reconstructed quantities with the measured ones, the structure and parameters of air data sensor models can be identified. In this paper, an introduction to the data compatibility check method and the setup used in a flight test for system identification is given. The DCC is applied on data gathered from a test campaign with the new DLR research aircraft Dassault Falcon 2000LX ISTAR. Use cases for the calibration of the nose boom airflow vanes and the correction of sensors during large sideslip maneuvers will be presented in this paper.\",\"PeriodicalId\":38083,\"journal\":{\"name\":\"CEAS Aeronautical Journal\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEAS Aeronautical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13272-023-00687-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEAS Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13272-023-00687-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Practical examples for the flight data compatibility check
Abstract Accurate information about aircraft speed, altitude, and aerodynamic flow angles is essential for evaluating aircraft performance and handling qualities. These quantities are determined from air data measurements taken by sensors normally located near the aircraft cockpit. Since these sensors are affected by the distorted flow field around the fuselage, a correction must be applied. Before the first flight, a set of calibration parameters is usually determined from wind tunnel experiments or CFD calculations. However, the Data Compatibility Check (DCC) method allows a more accurate air data sensor calibration during the certification flight test. This method reconstructs air data quantities from inertial acceleration, angular rate measurements and the flight path. By comparing the reconstructed quantities with the measured ones, the structure and parameters of air data sensor models can be identified. In this paper, an introduction to the data compatibility check method and the setup used in a flight test for system identification is given. The DCC is applied on data gathered from a test campaign with the new DLR research aircraft Dassault Falcon 2000LX ISTAR. Use cases for the calibration of the nose boom airflow vanes and the correction of sensors during large sideslip maneuvers will be presented in this paper.
期刊介绍:
The CEAS Aeronautical Journal has been created under the umbrella of CEAS to provide an appropriate platform for excellent scientific publications submitted by scientists and engineers. The German Aerospace Center (DLR) and the European Space Agency (ESA) support the Journal.The Journal is devoted to publishing results and findings in all areas of aeronautics-related science and technology as well as reports on new developments in design and manufacturing of aircraft, rotorcraft, and unmanned aerial vehicles. Of interest are also (invited) in-depth reviews of the status of development in specific areas of relevance to aeronautics, and descriptions of the potential way forward. Typical disciplines of interest include flight physics and aerodynamics, aeroelasticity and structural mechanics, aeroacoustics, structures and materials, flight mechanics and flight control, systems, flight guidance, air traffic management, communication, navigation and surveillance, aircraft and aircraft design, rotorcraft and propulsion.The Journal publishes peer-reviewed original articles, (invited) reviews and short communications.