航拍图像中车辆检测的数据增强分析

Khang Nguyen
{"title":"航拍图像中车辆检测的数据增强分析","authors":"Khang Nguyen","doi":"10.15625/1813-9663/18259","DOIUrl":null,"url":null,"abstract":"Drones are increasingly used in various application domains including surveillance, agriculture, delivery, search and rescue missions. Object detection in aerial images (captured by drones) gradually gains more interest in computer vision community. However, research activities are still very few in this area due to numerous challenges such as top-view angle, small-scale object, diverse directions, and data imbalance. In this paper, we investigate different data augmentation techniques. Furthermore, we propose combining data augmentation methods to further enhance the performance of the state-of-the-art object detection methods. Extensive experiments on two datasets, namely, AERIAU, and XDUAV, demonstrate that the combination of random cropped and vertical flipped data boosts the performance of object detectors on aerial images.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DATA AUGMENTATION ANALYSIS OF VEHICLE DETECTION IN AERIAL IMAGES\",\"authors\":\"Khang Nguyen\",\"doi\":\"10.15625/1813-9663/18259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drones are increasingly used in various application domains including surveillance, agriculture, delivery, search and rescue missions. Object detection in aerial images (captured by drones) gradually gains more interest in computer vision community. However, research activities are still very few in this area due to numerous challenges such as top-view angle, small-scale object, diverse directions, and data imbalance. In this paper, we investigate different data augmentation techniques. Furthermore, we propose combining data augmentation methods to further enhance the performance of the state-of-the-art object detection methods. Extensive experiments on two datasets, namely, AERIAU, and XDUAV, demonstrate that the combination of random cropped and vertical flipped data boosts the performance of object detectors on aerial images.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/18259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/18259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无人机越来越多地用于各种应用领域,包括监视,农业,交付,搜索和救援任务。无人机拍摄的航拍图像中的目标检测逐渐受到计算机视觉界的关注。然而,由于俯视图角度、对象小尺度、方向多样、数据不平衡等诸多挑战,该领域的研究活动仍然很少。在本文中,我们研究了不同的数据增强技术。此外,我们提出结合数据增强方法,以进一步提高最先进的目标检测方法的性能。在AERIAU和XDUAV两个数据集上进行的大量实验表明,随机裁剪和垂直翻转数据的组合提高了航空图像上目标检测器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DATA AUGMENTATION ANALYSIS OF VEHICLE DETECTION IN AERIAL IMAGES
Drones are increasingly used in various application domains including surveillance, agriculture, delivery, search and rescue missions. Object detection in aerial images (captured by drones) gradually gains more interest in computer vision community. However, research activities are still very few in this area due to numerous challenges such as top-view angle, small-scale object, diverse directions, and data imbalance. In this paper, we investigate different data augmentation techniques. Furthermore, we propose combining data augmentation methods to further enhance the performance of the state-of-the-art object detection methods. Extensive experiments on two datasets, namely, AERIAU, and XDUAV, demonstrate that the combination of random cropped and vertical flipped data boosts the performance of object detectors on aerial images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROVING THE SECURITY OF AES BLOCK CIPHER BASED ON MODIFIED MIXCOLUMN AN IMPROVED INDEXING METHOD FOR QUERYING BIG XML FILES OHYEAH AT VLSP2022-EVJVQA CHALLENGE: A JOINTLY LANGUAGE-IMAGE MODEL FOR MULTILINGUAL VISUAL QUESTION ANSWERING THE VNPT-IT EMOTION TRANSPLANTATION APPROACH FOR VLSP 2022 TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1