{"title":"人类流动性和空气颗粒物对COVID-19传播的动态影响建模","authors":"Klot Patanarapeelert, Rossanan Chandumrong, Nichaphat Patanarapeelert","doi":"10.3390/computation11110211","DOIUrl":null,"url":null,"abstract":"Identifying the relationship between human mobility, air pollution, and communicable disease poses a challenge for impact evaluation and public health planning. Specifically, Coronavirus disease 2019 (COVID-19) and air pollution from fine particulates (PM2.5), by which human mobility is mediated in a public health emergency. To describe the interplay between human mobility and PM2.5 during the spread of COVID-19, we proposed a nonlinear model of the time-dependent transmission rate as a function of these factors. A compartmental epidemic model, together with daily confirmed case data in Bangkok, Thailand during 2020–2021, was used to estimate the intrinsic parameters that can determine the impact on the transmission dynamic of the two earlier outbreaks. The results suggested a positive association between mobility and transmission, but this was strongly dependent on the context and the temporal characteristics of the data. For the ascending phase of an epidemic, the estimated coefficient of mobility variable in the second wave was greater than in the first wave, but the value of the mobility component in the transmission rate was smaller. Due to the influence of the baseline value and PM2.5, the estimated basic reproduction number of the second wave was higher than that of the first wave, even though mobility had a greater influence. For the descending phase, the value of the mobility component in the second wave was greater, due to the negative value of the estimated mobility coefficient. Despite this scaling effect, the results suggest a negative association between PM2.5 and the transmission rates. Although this conclusion agrees with some previous studies, the true effect of PM2.5 remains inconclusive and requires further investigation.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"23 3","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Dynamic Effects of Human Mobility and Airborne Particulate Matter on the Spread of COVID-19\",\"authors\":\"Klot Patanarapeelert, Rossanan Chandumrong, Nichaphat Patanarapeelert\",\"doi\":\"10.3390/computation11110211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the relationship between human mobility, air pollution, and communicable disease poses a challenge for impact evaluation and public health planning. Specifically, Coronavirus disease 2019 (COVID-19) and air pollution from fine particulates (PM2.5), by which human mobility is mediated in a public health emergency. To describe the interplay between human mobility and PM2.5 during the spread of COVID-19, we proposed a nonlinear model of the time-dependent transmission rate as a function of these factors. A compartmental epidemic model, together with daily confirmed case data in Bangkok, Thailand during 2020–2021, was used to estimate the intrinsic parameters that can determine the impact on the transmission dynamic of the two earlier outbreaks. The results suggested a positive association between mobility and transmission, but this was strongly dependent on the context and the temporal characteristics of the data. For the ascending phase of an epidemic, the estimated coefficient of mobility variable in the second wave was greater than in the first wave, but the value of the mobility component in the transmission rate was smaller. Due to the influence of the baseline value and PM2.5, the estimated basic reproduction number of the second wave was higher than that of the first wave, even though mobility had a greater influence. For the descending phase, the value of the mobility component in the second wave was greater, due to the negative value of the estimated mobility coefficient. Despite this scaling effect, the results suggest a negative association between PM2.5 and the transmission rates. Although this conclusion agrees with some previous studies, the true effect of PM2.5 remains inconclusive and requires further investigation.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"23 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11110211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Modeling the Dynamic Effects of Human Mobility and Airborne Particulate Matter on the Spread of COVID-19
Identifying the relationship between human mobility, air pollution, and communicable disease poses a challenge for impact evaluation and public health planning. Specifically, Coronavirus disease 2019 (COVID-19) and air pollution from fine particulates (PM2.5), by which human mobility is mediated in a public health emergency. To describe the interplay between human mobility and PM2.5 during the spread of COVID-19, we proposed a nonlinear model of the time-dependent transmission rate as a function of these factors. A compartmental epidemic model, together with daily confirmed case data in Bangkok, Thailand during 2020–2021, was used to estimate the intrinsic parameters that can determine the impact on the transmission dynamic of the two earlier outbreaks. The results suggested a positive association between mobility and transmission, but this was strongly dependent on the context and the temporal characteristics of the data. For the ascending phase of an epidemic, the estimated coefficient of mobility variable in the second wave was greater than in the first wave, but the value of the mobility component in the transmission rate was smaller. Due to the influence of the baseline value and PM2.5, the estimated basic reproduction number of the second wave was higher than that of the first wave, even though mobility had a greater influence. For the descending phase, the value of the mobility component in the second wave was greater, due to the negative value of the estimated mobility coefficient. Despite this scaling effect, the results suggest a negative association between PM2.5 and the transmission rates. Although this conclusion agrees with some previous studies, the true effect of PM2.5 remains inconclusive and requires further investigation.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.