共享缓存管理的请求响应仲裁

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Embedded Computing Systems Pub Date : 2023-09-09 DOI:10.1145/3608096
Garima Modi, Aritra Bagchi, Neetu Jindal, Ayan Mandal, Preeti Ranjan Panda
{"title":"共享缓存管理的请求响应仲裁","authors":"Garima Modi, Aritra Bagchi, Neetu Jindal, Ayan Mandal, Preeti Ranjan Panda","doi":"10.1145/3608096","DOIUrl":null,"url":null,"abstract":"Modern multi-processor systems-on-chip (MPSoCs) are characterized by caches shared by multiple cores. These shared caches receive requests issued by the processor cores. Requests that are subject to cache misses may result in the generation of responses . These responses are received from the lower level of the memory hierarchy and written to the cache. The outstanding requests and responses contend for the shared cache bandwidth. To mitigate the impact of the cache bandwidth contention on the overall system performance, an efficient request and response arbitration policy is needed. Research on shared cache management has neglected the additional cache contention caused by responses, which are written to the cache. We propose CABARRE , a novel request and response arbitration policy at shared caches, so as to improve the overall system performance. CABARRE shows a performance improvement of 23% on average across a set of SPEC workloads compared to straightforward adaptations of state-of-the-art solutions.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"64 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CABARRE: Request Response Arbitration for Shared Cache Management\",\"authors\":\"Garima Modi, Aritra Bagchi, Neetu Jindal, Ayan Mandal, Preeti Ranjan Panda\",\"doi\":\"10.1145/3608096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern multi-processor systems-on-chip (MPSoCs) are characterized by caches shared by multiple cores. These shared caches receive requests issued by the processor cores. Requests that are subject to cache misses may result in the generation of responses . These responses are received from the lower level of the memory hierarchy and written to the cache. The outstanding requests and responses contend for the shared cache bandwidth. To mitigate the impact of the cache bandwidth contention on the overall system performance, an efficient request and response arbitration policy is needed. Research on shared cache management has neglected the additional cache contention caused by responses, which are written to the cache. We propose CABARRE , a novel request and response arbitration policy at shared caches, so as to improve the overall system performance. CABARRE shows a performance improvement of 23% on average across a set of SPEC workloads compared to straightforward adaptations of state-of-the-art solutions.\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3608096\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3608096","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

现代多处理器片上系统(mpsoc)的特点是由多个核心共享缓存。这些共享缓存接收处理器内核发出的请求。缓存丢失的请求可能导致生成响应。这些响应从内存层次结构的较低级别接收并写入缓存。未完成的请求和响应争用共享缓存带宽。为了减轻缓存带宽争用对系统整体性能的影响,需要一种有效的请求和响应仲裁策略。共享缓存管理的研究忽略了响应引起的额外缓存争用,这些响应被写入缓存。为了提高系统的整体性能,我们提出了一种基于共享缓存的请求和响应仲裁策略——CABARRE。与直接适应最先进的解决方案相比,CABARRE在一组SPEC工作负载上的性能平均提高了23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CABARRE: Request Response Arbitration for Shared Cache Management
Modern multi-processor systems-on-chip (MPSoCs) are characterized by caches shared by multiple cores. These shared caches receive requests issued by the processor cores. Requests that are subject to cache misses may result in the generation of responses . These responses are received from the lower level of the memory hierarchy and written to the cache. The outstanding requests and responses contend for the shared cache bandwidth. To mitigate the impact of the cache bandwidth contention on the overall system performance, an efficient request and response arbitration policy is needed. Research on shared cache management has neglected the additional cache contention caused by responses, which are written to the cache. We propose CABARRE , a novel request and response arbitration policy at shared caches, so as to improve the overall system performance. CABARRE shows a performance improvement of 23% on average across a set of SPEC workloads compared to straightforward adaptations of state-of-the-art solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
期刊最新文献
Multi-Traffic Resource Optimization for Real-Time Applications with 5G Configured Grant Scheduling Dynamic Cluster Head Selection in WSN Lightweight Hardware-Based Cache Side-Channel Attack Detection for Edge Devices (Edge-CaSCADe) Reordering Functions in Mobiles Apps for Reduced Size and Faster Start-Up NAVIDRO, a CARES architectural style for configuring drone co-simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1