一种消除基于NoC的mpsoc缓存污染的动态技术

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Embedded Computing Systems Pub Date : 2023-09-09 DOI:10.1145/3609113
Dipika Deb, John Jose
{"title":"一种消除基于NoC的mpsoc缓存污染的动态技术","authors":"Dipika Deb, John Jose","doi":"10.1145/3609113","DOIUrl":null,"url":null,"abstract":"Data prefetching efficiently reduces the memory access latency in NUCA architectures as the Last Level Cache (LLC) is shared and distributed across multiple cores. But cache pollution generated by prefetcher reduces its efficiency by causing contention for shared resources such as LLC and the underlying network. The paper proposes Zero Pollution Prefetcher (ZPP) that eliminates cache pollution for NUCA architecture. For this purpose, ZPP uses L1 prefetcher and places the prefetched blocks in the data locations of LLC where modified blocks are stored. Since modified blocks in LLC are stale and request for such blocks are served from the exclusively owned private cache, their space unnecessary consumes power to maintain such stale data in the cache. The benefits of ZPP are (a) Eliminates cache pollution in L1 and LLC by storing prefetched blocks in LLC locations where stale blocks are stored. (b) Insufficient cache space is solved by placing prefetched blocks in LLC as LLCs are larger in size than L1 cache. This helps in prefetching more cache blocks, thereby increasing prefetch aggressiveness. (c) Increasing prefetch aggressiveness increases its coverage. (d) It also maintains an equivalent lookup latency to L1 cache for prefetched blocks. Experimentally it has been found that ZPP increases weighted speedup by 2.19x as compared to a system with no prefetching while prefetch coverage and prefetch accuracy increases by 50%, and 12%, respectively compared to the baseline.1","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"20 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZPP: A Dynamic Technique to Eliminate Cache Pollution in NoC based MPSoCs\",\"authors\":\"Dipika Deb, John Jose\",\"doi\":\"10.1145/3609113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data prefetching efficiently reduces the memory access latency in NUCA architectures as the Last Level Cache (LLC) is shared and distributed across multiple cores. But cache pollution generated by prefetcher reduces its efficiency by causing contention for shared resources such as LLC and the underlying network. The paper proposes Zero Pollution Prefetcher (ZPP) that eliminates cache pollution for NUCA architecture. For this purpose, ZPP uses L1 prefetcher and places the prefetched blocks in the data locations of LLC where modified blocks are stored. Since modified blocks in LLC are stale and request for such blocks are served from the exclusively owned private cache, their space unnecessary consumes power to maintain such stale data in the cache. The benefits of ZPP are (a) Eliminates cache pollution in L1 and LLC by storing prefetched blocks in LLC locations where stale blocks are stored. (b) Insufficient cache space is solved by placing prefetched blocks in LLC as LLCs are larger in size than L1 cache. This helps in prefetching more cache blocks, thereby increasing prefetch aggressiveness. (c) Increasing prefetch aggressiveness increases its coverage. (d) It also maintains an equivalent lookup latency to L1 cache for prefetched blocks. Experimentally it has been found that ZPP increases weighted speedup by 2.19x as compared to a system with no prefetching while prefetch coverage and prefetch accuracy increases by 50%, and 12%, respectively compared to the baseline.1\",\"PeriodicalId\":50914,\"journal\":{\"name\":\"ACM Transactions on Embedded Computing Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Embedded Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609113\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609113","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

数据预取有效地减少了NUCA架构中的内存访问延迟,因为最后一级缓存(LLC)是跨多个核心共享和分布的。但是由预取器产生的缓存污染会导致共享资源(如LLC和底层网络)的争用,从而降低其效率。提出了零污染预取器(Zero Pollution Prefetcher, ZPP)来消除NUCA架构中的缓存污染。为此,ZPP使用L1预取器,并将预取的块放置在LLC中存储修改块的数据位置。由于在LLC中修改的块是陈旧的,并且对这些块的请求是从独占的私有缓存中提供的,因此它们不必要的空间消耗了在缓存中维护这些陈旧数据的功率。ZPP的好处是:(a)通过将预取的块存储在存储陈旧块的LLC位置,消除L1和LLC中的缓存污染。(b)由于LLC的大小大于L1缓存,通过在LLC中放置预取块来解决缓存空间不足的问题。这有助于预取更多的缓存块,从而提高预取的主动性。(c)增加预取积极性增加其覆盖范围。(d)对于预取的块,它还保持与L1缓存相同的查找延迟。实验发现,与没有预取的系统相比,ZPP将加权加速提高了2.19倍,而预取覆盖率和预取精度分别比基线提高了50%和12%。1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZPP: A Dynamic Technique to Eliminate Cache Pollution in NoC based MPSoCs
Data prefetching efficiently reduces the memory access latency in NUCA architectures as the Last Level Cache (LLC) is shared and distributed across multiple cores. But cache pollution generated by prefetcher reduces its efficiency by causing contention for shared resources such as LLC and the underlying network. The paper proposes Zero Pollution Prefetcher (ZPP) that eliminates cache pollution for NUCA architecture. For this purpose, ZPP uses L1 prefetcher and places the prefetched blocks in the data locations of LLC where modified blocks are stored. Since modified blocks in LLC are stale and request for such blocks are served from the exclusively owned private cache, their space unnecessary consumes power to maintain such stale data in the cache. The benefits of ZPP are (a) Eliminates cache pollution in L1 and LLC by storing prefetched blocks in LLC locations where stale blocks are stored. (b) Insufficient cache space is solved by placing prefetched blocks in LLC as LLCs are larger in size than L1 cache. This helps in prefetching more cache blocks, thereby increasing prefetch aggressiveness. (c) Increasing prefetch aggressiveness increases its coverage. (d) It also maintains an equivalent lookup latency to L1 cache for prefetched blocks. Experimentally it has been found that ZPP increases weighted speedup by 2.19x as compared to a system with no prefetching while prefetch coverage and prefetch accuracy increases by 50%, and 12%, respectively compared to the baseline.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
期刊最新文献
Multi-Traffic Resource Optimization for Real-Time Applications with 5G Configured Grant Scheduling Dynamic Cluster Head Selection in WSN Lightweight Hardware-Based Cache Side-Channel Attack Detection for Edge Devices (Edge-CaSCADe) Reordering Functions in Mobiles Apps for Reduced Size and Faster Start-Up NAVIDRO, a CARES architectural style for configuring drone co-simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1