Thananphat Thanakulketsarat, Pornchai Supnithi, Lin Min Min Myint, Kornyanat Hozumi, Michi Nishioka
{"title":"利用卷积神经网络和支持向量机技术对赤道等离子体气泡进行分类","authors":"Thananphat Thanakulketsarat, Pornchai Supnithi, Lin Min Min Myint, Kornyanat Hozumi, Michi Nishioka","doi":"10.1186/s40623-023-01903-7","DOIUrl":null,"url":null,"abstract":"Abstract Equatorial plasma bubble (EPB) is a phenomenon characterized by depletions in ionospheric plasma density being formed during post-sunset hours. The ionospheric irregularities can lead to disruptions in trans-ionospheric radio systems, navigation systems and satellite communications. Real-time detection and classification of EPBs are crucial for the space weather community. Since 2020, the Prachomklao radar station, a very high frequency (VHF) radar station, has been installed at Chumphon station (Geographic: 10.72° N, 99.73° E and Geomagnetic: 1.33° N) and started to produce radar images ever since. In this work, we propose two real-time plasma bubble detection systems based on support vector machine techniques. Two designs are made with the convolutional neural network (CNN) and singular value decomposition (SVD) used for feature extraction, the connected to the support vector machine (SVM) for EPB classification. The proposed models are trained using quick look (QL) plot images from the VHF radar system at the Chumphon station, Thailand, in 2017. The experimental results show that the combined CNN-SVM model, using the RBF kernel, achieves the highest accuracy of 93.08% while the model using the polynomial kernel achieved an accuracy of 92.14%. On the other hand, the combined SVD-SVM models yield the accuracies of 88.37% and 85.00% for RBF and polynomial kernels of SVM, respectively. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"1 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of the equatorial plasma bubbles using convolutional neural network and support vector machine techniques\",\"authors\":\"Thananphat Thanakulketsarat, Pornchai Supnithi, Lin Min Min Myint, Kornyanat Hozumi, Michi Nishioka\",\"doi\":\"10.1186/s40623-023-01903-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Equatorial plasma bubble (EPB) is a phenomenon characterized by depletions in ionospheric plasma density being formed during post-sunset hours. The ionospheric irregularities can lead to disruptions in trans-ionospheric radio systems, navigation systems and satellite communications. Real-time detection and classification of EPBs are crucial for the space weather community. Since 2020, the Prachomklao radar station, a very high frequency (VHF) radar station, has been installed at Chumphon station (Geographic: 10.72° N, 99.73° E and Geomagnetic: 1.33° N) and started to produce radar images ever since. In this work, we propose two real-time plasma bubble detection systems based on support vector machine techniques. Two designs are made with the convolutional neural network (CNN) and singular value decomposition (SVD) used for feature extraction, the connected to the support vector machine (SVM) for EPB classification. The proposed models are trained using quick look (QL) plot images from the VHF radar system at the Chumphon station, Thailand, in 2017. The experimental results show that the combined CNN-SVM model, using the RBF kernel, achieves the highest accuracy of 93.08% while the model using the polynomial kernel achieved an accuracy of 92.14%. On the other hand, the combined SVD-SVM models yield the accuracies of 88.37% and 85.00% for RBF and polynomial kernels of SVM, respectively. Graphical Abstract\",\"PeriodicalId\":11409,\"journal\":{\"name\":\"Earth, Planets and Space\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth, Planets and Space\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40623-023-01903-7\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth, Planets and Space","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40623-023-01903-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of the equatorial plasma bubbles using convolutional neural network and support vector machine techniques
Abstract Equatorial plasma bubble (EPB) is a phenomenon characterized by depletions in ionospheric plasma density being formed during post-sunset hours. The ionospheric irregularities can lead to disruptions in trans-ionospheric radio systems, navigation systems and satellite communications. Real-time detection and classification of EPBs are crucial for the space weather community. Since 2020, the Prachomklao radar station, a very high frequency (VHF) radar station, has been installed at Chumphon station (Geographic: 10.72° N, 99.73° E and Geomagnetic: 1.33° N) and started to produce radar images ever since. In this work, we propose two real-time plasma bubble detection systems based on support vector machine techniques. Two designs are made with the convolutional neural network (CNN) and singular value decomposition (SVD) used for feature extraction, the connected to the support vector machine (SVM) for EPB classification. The proposed models are trained using quick look (QL) plot images from the VHF radar system at the Chumphon station, Thailand, in 2017. The experimental results show that the combined CNN-SVM model, using the RBF kernel, achieves the highest accuracy of 93.08% while the model using the polynomial kernel achieved an accuracy of 92.14%. On the other hand, the combined SVD-SVM models yield the accuracies of 88.37% and 85.00% for RBF and polynomial kernels of SVM, respectively. Graphical Abstract
期刊介绍:
Earth, Planets and Space (EPS) covers scientific articles in Earth and Planetary Sciences, particularly geomagnetism, aeronomy, space science, seismology, volcanology, geodesy, and planetary science. EPS also welcomes articles in new and interdisciplinary subjects, including instrumentations. Only new and original contents will be accepted for publication.