Adithya Murali, Lucas Peña, Ranjit Jhala, P. Madhusudan
{"title":"函数程序性质的完全一阶推理","authors":"Adithya Murali, Lucas Peña, Ranjit Jhala, P. Madhusudan","doi":"10.1145/3622835","DOIUrl":null,"url":null,"abstract":"Several practical tools for automatically verifying functional programs (e.g., Liquid Haskell and Leon for Scala programs) rely on a heuristic based on unrolling recursive function definitions followed by quantifier-free reasoning using SMT solvers. We uncover foundational theoretical properties of this heuristic, revealing that it can be generalized and formalized as a technique that is in fact complete for reasoning with combined First-Order theories of algebraic datatypes and background theories, where background theories support decidable quantifier-free reasoning. The theory developed in this paper explains the efficacy of these heuristics when they succeed, explain why they fail when they fail, and the precise role that user help plays in making proofs succeed.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"176 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete First-Order Reasoning for Properties of Functional Programs\",\"authors\":\"Adithya Murali, Lucas Peña, Ranjit Jhala, P. Madhusudan\",\"doi\":\"10.1145/3622835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several practical tools for automatically verifying functional programs (e.g., Liquid Haskell and Leon for Scala programs) rely on a heuristic based on unrolling recursive function definitions followed by quantifier-free reasoning using SMT solvers. We uncover foundational theoretical properties of this heuristic, revealing that it can be generalized and formalized as a technique that is in fact complete for reasoning with combined First-Order theories of algebraic datatypes and background theories, where background theories support decidable quantifier-free reasoning. The theory developed in this paper explains the efficacy of these heuristics when they succeed, explain why they fail when they fail, and the precise role that user help plays in making proofs succeed.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Complete First-Order Reasoning for Properties of Functional Programs
Several practical tools for automatically verifying functional programs (e.g., Liquid Haskell and Leon for Scala programs) rely on a heuristic based on unrolling recursive function definitions followed by quantifier-free reasoning using SMT solvers. We uncover foundational theoretical properties of this heuristic, revealing that it can be generalized and formalized as a technique that is in fact complete for reasoning with combined First-Order theories of algebraic datatypes and background theories, where background theories support decidable quantifier-free reasoning. The theory developed in this paper explains the efficacy of these heuristics when they succeed, explain why they fail when they fail, and the precise role that user help plays in making proofs succeed.