分析器如何帮助导航类型迁移

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on Programming Languages Pub Date : 2023-10-16 DOI:10.1145/3622817
Ben Greenman, Matthias Felleisen, Christos Dimoulas
{"title":"分析器如何帮助导航类型迁移","authors":"Ben Greenman, Matthias Felleisen, Christos Dimoulas","doi":"10.1145/3622817","DOIUrl":null,"url":null,"abstract":"Sound migratory typing envisions a safe and smooth refactoring of untyped code bases to typed ones. However, the cost of enforcing safety with run-time checks is often prohibitively high, thus performance regressions are a likely occurrence. Additional types can often recover performance, but choosing the right components to type is difficult because of the exponential size of the migratory typing lattice. In principal though, migration could be guided by off-the-shelf profiling tools. To examine this hypothesis, this paper follows the rational programmer method and reports on the results of an experiment on tens of thousands of performance-debugging scenarios via seventeen strategies for turning profiler output into an actionable next step. The most effective strategy is the use of deep types to eliminate the most costly boundaries between typed and untyped components; this strategy succeeds in more than 50% of scenarios if two performance degradations are tolerable along the way.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Profilers Can Help Navigate Type Migration\",\"authors\":\"Ben Greenman, Matthias Felleisen, Christos Dimoulas\",\"doi\":\"10.1145/3622817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound migratory typing envisions a safe and smooth refactoring of untyped code bases to typed ones. However, the cost of enforcing safety with run-time checks is often prohibitively high, thus performance regressions are a likely occurrence. Additional types can often recover performance, but choosing the right components to type is difficult because of the exponential size of the migratory typing lattice. In principal though, migration could be guided by off-the-shelf profiling tools. To examine this hypothesis, this paper follows the rational programmer method and reports on the results of an experiment on tens of thousands of performance-debugging scenarios via seventeen strategies for turning profiler output into an actionable next step. The most effective strategy is the use of deep types to eliminate the most costly boundaries between typed and untyped components; this strategy succeeds in more than 50% of scenarios if two performance degradations are tolerable along the way.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

合理的迁移类型设想了将非类型化的代码库安全而顺利地重构为类型化的代码库。然而,使用运行时检查来强制执行安全性的成本通常高得令人望而却步,因此很可能出现性能退化。额外的类型通常可以恢复性能,但是选择正确的组件类型是困难的,因为迁移类型晶格的指数大小。原则上,迁移可以由现成的分析工具来指导。为了检验这一假设,本文遵循了理性程序员方法,并报告了通过17种策略将分析器输出转换为可操作的下一步的数万种性能调试场景的实验结果。最有效的策略是使用深度类型来消除类型化和非类型化组件之间最昂贵的边界;如果在此过程中可以容忍两次性能下降,则此策略在50%以上的场景中都能成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How Profilers Can Help Navigate Type Migration
Sound migratory typing envisions a safe and smooth refactoring of untyped code bases to typed ones. However, the cost of enforcing safety with run-time checks is often prohibitively high, thus performance regressions are a likely occurrence. Additional types can often recover performance, but choosing the right components to type is difficult because of the exponential size of the migratory typing lattice. In principal though, migration could be guided by off-the-shelf profiling tools. To examine this hypothesis, this paper follows the rational programmer method and reports on the results of an experiment on tens of thousands of performance-debugging scenarios via seventeen strategies for turning profiler output into an actionable next step. The most effective strategy is the use of deep types to eliminate the most costly boundaries between typed and untyped components; this strategy succeeds in more than 50% of scenarios if two performance degradations are tolerable along the way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
期刊最新文献
ReLU Hull Approximation An Axiomatic Basis for Computer Programming on the Relaxed Arm-A Architecture: The AxSL Logic The Essence of Generalized Algebraic Data Types Explicit Effects and Effect Constraints in ReML Indexed Types for a Statically Safe WebAssembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1