Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong Wu, Shanshan Li, Bin Gu
{"title":"面向浏览器模糊测试更好的语义探索","authors":"Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong Wu, Shanshan Li, Bin Gu","doi":"10.1145/3622819","DOIUrl":null,"url":null,"abstract":"Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these intricate semantics present significant challenges for the implementation and testing of browsers. For example, fuzzing, a widely adopted testing technique, typically relies on handwritten context-free grammars (CFGs) for automatically generating inputs. However, these CFGs fall short in adequately modeling the complex semantics of browsers, resulting in generated inputs that cover only a portion of the semantics and are prone to semantic errors. In this paper, we present SaGe, an automated method that enhances browser fuzzing through the use of production-context sensitive grammars (PCSGs) incorporating semantic information. Our approach begins by extracting a rudimentary CFG from W3C standards and iteratively enhancing it to create a PCSG. The resulting PCSG enables our fuzzer to generate inputs that explore a broader range of browser semantics with a higher proportion of semantically-correct inputs. To evaluate the efficacy of SaGe, we conducted 24-hour fuzzing campaigns on mainstream browsers, including Chrome, Safari, and Firefox. Our approach demonstrated better performance compared to existing browser fuzzers, with a 6.03%-277.80% improvement in edge coverage, a 3.56%-161.71% boost in semantic correctness rate, twice the number of bugs discovered. Moreover, we identified 62 bugs across the three browsers, with 40 confirmed and 10 assigned CVEs.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"35 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Better Semantics Exploration for Browser Fuzzing\",\"authors\":\"Chijin Zhou, Quan Zhang, Lihua Guo, Mingzhe Wang, Yu Jiang, Qing Liao, Zhiyong Wu, Shanshan Li, Bin Gu\",\"doi\":\"10.1145/3622819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these intricate semantics present significant challenges for the implementation and testing of browsers. For example, fuzzing, a widely adopted testing technique, typically relies on handwritten context-free grammars (CFGs) for automatically generating inputs. However, these CFGs fall short in adequately modeling the complex semantics of browsers, resulting in generated inputs that cover only a portion of the semantics and are prone to semantic errors. In this paper, we present SaGe, an automated method that enhances browser fuzzing through the use of production-context sensitive grammars (PCSGs) incorporating semantic information. Our approach begins by extracting a rudimentary CFG from W3C standards and iteratively enhancing it to create a PCSG. The resulting PCSG enables our fuzzer to generate inputs that explore a broader range of browser semantics with a higher proportion of semantically-correct inputs. To evaluate the efficacy of SaGe, we conducted 24-hour fuzzing campaigns on mainstream browsers, including Chrome, Safari, and Firefox. Our approach demonstrated better performance compared to existing browser fuzzers, with a 6.03%-277.80% improvement in edge coverage, a 3.56%-161.71% boost in semantic correctness rate, twice the number of bugs discovered. Moreover, we identified 62 bugs across the three browsers, with 40 confirmed and 10 assigned CVEs.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Towards Better Semantics Exploration for Browser Fuzzing
Web browsers exhibit rich semantics that enable a plethora of web-based functionalities. However, these intricate semantics present significant challenges for the implementation and testing of browsers. For example, fuzzing, a widely adopted testing technique, typically relies on handwritten context-free grammars (CFGs) for automatically generating inputs. However, these CFGs fall short in adequately modeling the complex semantics of browsers, resulting in generated inputs that cover only a portion of the semantics and are prone to semantic errors. In this paper, we present SaGe, an automated method that enhances browser fuzzing through the use of production-context sensitive grammars (PCSGs) incorporating semantic information. Our approach begins by extracting a rudimentary CFG from W3C standards and iteratively enhancing it to create a PCSG. The resulting PCSG enables our fuzzer to generate inputs that explore a broader range of browser semantics with a higher proportion of semantically-correct inputs. To evaluate the efficacy of SaGe, we conducted 24-hour fuzzing campaigns on mainstream browsers, including Chrome, Safari, and Firefox. Our approach demonstrated better performance compared to existing browser fuzzers, with a 6.03%-277.80% improvement in edge coverage, a 3.56%-161.71% boost in semantic correctness rate, twice the number of bugs discovered. Moreover, we identified 62 bugs across the three browsers, with 40 confirmed and 10 assigned CVEs.