综合高效记忆算法

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Proceedings of the ACM on Programming Languages Pub Date : 2023-10-16 DOI:10.1145/3622800
Yican Sun, Xuanyu Peng, Yingfei Xiong
{"title":"综合高效记忆算法","authors":"Yican Sun, Xuanyu Peng, Yingfei Xiong","doi":"10.1145/3622800","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automated approach to finding correct and efficient memoization algorithms from a given declarative specification. This problem has two major challenges: (i) a memoization algorithm is too large to be handled by conventional program synthesizers; (ii) we need to guarantee the efficiency of the memoization algorithm. To address this challenge, we structure the synthesis of memoization algorithms by introducing the local objective function and the memoization partition function and reduce the synthesis task to two smaller independent program synthesis tasks. Moreover, the number of distinct outputs of the function synthesized in the second synthesis task also decides the efficiency of the synthesized memoization algorithm, and we only need to minimize the number of different output values of the synthesized function. However, the generated synthesis task is still too complex for existing synthesizers. Thus, we propose a novel synthesis algorithm that combines the deductive and inductive methods to solve these tasks. To evaluate our algorithm, we collect 42 real-world benchmarks from Leetcode, the National Olympiad in Informatics in Provinces-Junior (a national-wide algorithmic programming contest in China), and previous approaches. Our approach successfully synhesizes 39/42 problems in a reasonable time, outperforming the baselines.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"41 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing Efficient Memoization Algorithms\",\"authors\":\"Yican Sun, Xuanyu Peng, Yingfei Xiong\",\"doi\":\"10.1145/3622800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an automated approach to finding correct and efficient memoization algorithms from a given declarative specification. This problem has two major challenges: (i) a memoization algorithm is too large to be handled by conventional program synthesizers; (ii) we need to guarantee the efficiency of the memoization algorithm. To address this challenge, we structure the synthesis of memoization algorithms by introducing the local objective function and the memoization partition function and reduce the synthesis task to two smaller independent program synthesis tasks. Moreover, the number of distinct outputs of the function synthesized in the second synthesis task also decides the efficiency of the synthesized memoization algorithm, and we only need to minimize the number of different output values of the synthesized function. However, the generated synthesis task is still too complex for existing synthesizers. Thus, we propose a novel synthesis algorithm that combines the deductive and inductive methods to solve these tasks. To evaluate our algorithm, we collect 42 real-world benchmarks from Leetcode, the National Olympiad in Informatics in Provinces-Junior (a national-wide algorithmic programming contest in China), and previous approaches. Our approach successfully synhesizes 39/42 problems in a reasonable time, outperforming the baselines.\",\"PeriodicalId\":20697,\"journal\":{\"name\":\"Proceedings of the ACM on Programming Languages\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3622800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种自动化的方法来从给定的声明性规范中找到正确和有效的记忆算法。这个问题有两个主要的挑战:(i)记忆算法太大,传统的程序合成器无法处理;(ii)我们需要保证记忆算法的效率。为了解决这一挑战,我们通过引入局部目标函数和记忆配分函数来构建记忆算法的综合,并将综合任务简化为两个较小的独立程序综合任务。而且,在第二个合成任务中合成的函数不同输出的个数也决定了合成记忆算法的效率,我们只需要最小化合成函数不同输出值的个数就可以了。然而,生成的合成任务对于现有的合成器来说仍然过于复杂。因此,我们提出了一种新的综合算法,结合演绎和归纳方法来解决这些任务。为了评估我们的算法,我们收集了42个真实世界的基准,这些基准来自Leetcode、全国省级信息学奥林匹克竞赛(中国的全国性算法编程竞赛)和以前的方法。我们的方法在合理的时间内成功地综合了39/42个问题,优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesizing Efficient Memoization Algorithms
In this paper, we propose an automated approach to finding correct and efficient memoization algorithms from a given declarative specification. This problem has two major challenges: (i) a memoization algorithm is too large to be handled by conventional program synthesizers; (ii) we need to guarantee the efficiency of the memoization algorithm. To address this challenge, we structure the synthesis of memoization algorithms by introducing the local objective function and the memoization partition function and reduce the synthesis task to two smaller independent program synthesis tasks. Moreover, the number of distinct outputs of the function synthesized in the second synthesis task also decides the efficiency of the synthesized memoization algorithm, and we only need to minimize the number of different output values of the synthesized function. However, the generated synthesis task is still too complex for existing synthesizers. Thus, we propose a novel synthesis algorithm that combines the deductive and inductive methods to solve these tasks. To evaluate our algorithm, we collect 42 real-world benchmarks from Leetcode, the National Olympiad in Informatics in Provinces-Junior (a national-wide algorithmic programming contest in China), and previous approaches. Our approach successfully synhesizes 39/42 problems in a reasonable time, outperforming the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
期刊最新文献
ReLU Hull Approximation An Axiomatic Basis for Computer Programming on the Relaxed Arm-A Architecture: The AxSL Logic The Essence of Generalized Algebraic Data Types Explicit Effects and Effect Constraints in ReML Indexed Types for a Statically Safe WebAssembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1