缺少数字和良好的近似值

IF 2 3区 数学 Q1 MATHEMATICS Bulletin of the American Mathematical Society Pub Date : 2023-10-16 DOI:10.1090/bull/1811
Andrew Granville
{"title":"缺少数字和良好的近似值","authors":"Andrew Granville","doi":"10.1090/bull/1811","DOIUrl":null,"url":null,"abstract":"James Maynard has taken the analytic number theory world by storm in the last decade, proving several important and surprising theorems, resolving questions that had seemed far out of reach. He is perhaps best known for his work on small and large gaps between primes (which were discussed, hot off the press, in our 2015 <italic>Bulletin of the AMS</italic> article). In this article we will discuss two other Maynard breakthroughs: — Mersenne numbers take the form <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 Superscript n Baseline minus 1\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2^n-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and so appear as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"111 ellipsis 111\"> <mml:semantics> <mml:mrow> <mml:mn>111</mml:mn> <mml:mo>…<!-- … --></mml:mo> <mml:mn>111</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">111\\dots 111</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in base 2, having no digit “<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>”. It is a famous conjecture that there are infinitely many such primes. More generally it was, until Maynard’s work, an open question as to whether there are infinitely many primes that miss any given digit, in any given base. We will discuss Maynard’s beautiful ideas that went into his 2019 partial resolution of this question. — In 1926, Khinchin gave remarkable conditions for when real numbers can usually be “well approximated” by infinitely many rationals. However Khinchin’s theorem regarded 1/2, 2/4, 3/6 as distinct rationals and so could not be easily modified to cope, say, with approximations by fractions with prime denominators. In 1941 Duffin and Schaeffer proposed an appropriate but significantly more general analogy involving approximation only by reduced fractions (which is much more useful). We will discuss its 2020 resolution by Maynard and Dimitris Koukoulopoulos.","PeriodicalId":9513,"journal":{"name":"Bulletin of the American Mathematical Society","volume":"36 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing digits and good approximations\",\"authors\":\"Andrew Granville\",\"doi\":\"10.1090/bull/1811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"James Maynard has taken the analytic number theory world by storm in the last decade, proving several important and surprising theorems, resolving questions that had seemed far out of reach. He is perhaps best known for his work on small and large gaps between primes (which were discussed, hot off the press, in our 2015 <italic>Bulletin of the AMS</italic> article). In this article we will discuss two other Maynard breakthroughs: — Mersenne numbers take the form <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 Superscript n Baseline minus 1\\\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">2^n-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and so appear as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"111 ellipsis 111\\\"> <mml:semantics> <mml:mrow> <mml:mn>111</mml:mn> <mml:mo>…<!-- … --></mml:mo> <mml:mn>111</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">111\\\\dots 111</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in base 2, having no digit “<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0\\\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>”. It is a famous conjecture that there are infinitely many such primes. More generally it was, until Maynard’s work, an open question as to whether there are infinitely many primes that miss any given digit, in any given base. We will discuss Maynard’s beautiful ideas that went into his 2019 partial resolution of this question. — In 1926, Khinchin gave remarkable conditions for when real numbers can usually be “well approximated” by infinitely many rationals. However Khinchin’s theorem regarded 1/2, 2/4, 3/6 as distinct rationals and so could not be easily modified to cope, say, with approximations by fractions with prime denominators. In 1941 Duffin and Schaeffer proposed an appropriate but significantly more general analogy involving approximation only by reduced fractions (which is much more useful). We will discuss its 2020 resolution by Maynard and Dimitris Koukoulopoulos.\",\"PeriodicalId\":9513,\"journal\":{\"name\":\"Bulletin of the American Mathematical Society\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1811\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1811","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,詹姆斯·梅纳德在分析数论领域掀起了一场风暴,他证明了几个重要而令人惊讶的定理,解决了一些似乎遥不可及的问题。他最为人所知的可能是他对质数之间大小间隙的研究(我们在2015年发表的《美国医学科学院公报》文章中对此进行了讨论)。在本文中,我们将讨论梅纳德的另外两个突破:-梅森数的形式为2 n−1 2^n-1,因此以2为基数表示为111…111 111\dots 111,没有数字“0 0”。有无穷多个这样的素数是一个著名的猜想。更一般地说,在梅纳德的研究之前,它是一个悬而未决的问题,即在任何给定的进制中,是否有无限多个质数没有漏掉任何给定的数字。我们将讨论梅纳德在2019年对这个问题的部分解决方案中提出的美丽想法。1926年,Khinchin给出了实数通常可以被无穷多个有理数“很好地近似”的显著条件。然而,钦钦定理把1/2、2/4、3/6看作是不同的有理数,因此不能轻易地加以修改,以应付,比方说,用素数为分母的分数近似。1941年,Duffin和Schaeffer提出了一个恰当但更普遍的类比,只涉及简化分数的近似(这更有用)。我们将讨论Maynard和Dimitris Koukoulopoulos提出的2020年决议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Missing digits and good approximations
James Maynard has taken the analytic number theory world by storm in the last decade, proving several important and surprising theorems, resolving questions that had seemed far out of reach. He is perhaps best known for his work on small and large gaps between primes (which were discussed, hot off the press, in our 2015 Bulletin of the AMS article). In this article we will discuss two other Maynard breakthroughs: — Mersenne numbers take the form 2 n 1 2^n-1 and so appear as 111 111 111\dots 111 in base 2, having no digit “ 0 0 ”. It is a famous conjecture that there are infinitely many such primes. More generally it was, until Maynard’s work, an open question as to whether there are infinitely many primes that miss any given digit, in any given base. We will discuss Maynard’s beautiful ideas that went into his 2019 partial resolution of this question. — In 1926, Khinchin gave remarkable conditions for when real numbers can usually be “well approximated” by infinitely many rationals. However Khinchin’s theorem regarded 1/2, 2/4, 3/6 as distinct rationals and so could not be easily modified to cope, say, with approximations by fractions with prime denominators. In 1941 Duffin and Schaeffer proposed an appropriate but significantly more general analogy involving approximation only by reduced fractions (which is much more useful). We will discuss its 2020 resolution by Maynard and Dimitris Koukoulopoulos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.
期刊最新文献
[untitled] Morawetz’s contributions to the mathematical theory of transonic flows, shock waves, and partial differential equations of mixed type Commentary Missing digits and good approximations A survey of the homology cobordism group
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1