Stefan Schwarz, Johannes Reil, Johann Gross, Andreas Hartung, David Rittinger, Malte Krack
{"title":"摩擦饱和极限循环振荡-试验台设计和数值预测方法的验证","authors":"Stefan Schwarz, Johannes Reil, Johann Gross, Andreas Hartung, David Rittinger, Malte Krack","doi":"10.1115/1.4063769","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, an experimental test rig for friction saturated limit cycle oscillations is proposed to provide a validation basis for corresponding numerical methods. Having in mind the application of turbine blades, an instrumented beam-like structure equipped with an adjustable velocity feedback loop and dry frictional contacts is designed and investigated. After dimensioning the test rig by means of a simplified one dimensional beam model and time domain simulations, the specific requirements of limit cycle oscillations for the design of the frictional contact, the velocity feedback loop and the excitation system are discussed and possible solutions are presented. Also appropriate measuring principles and evaluation techniques are assessed. After commissioning of the test rig, the influence of the negative damping and the normal contact force on the limit cycle oscillations is measured and the practical stability is investigated. The test rig shows linear dynamics for sticking contact and highly repeatable limit cycles. The measured results are discussed regarding the consistency with theory and compared to the predictions of a three dimensional reduced order model solved in frequency domain by the harmonic balance solver OrAgL. It is demonstrated that the numerical modeling strategy is able to accurately reproduce the measured limit cycle oscillations, which stabilized for different contact normal forces and self-excitation levels.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friction Saturated Limit Cycle Oscillations - Test Rig Design and Validation of Numerical Prediction Methods\",\"authors\":\"Stefan Schwarz, Johannes Reil, Johann Gross, Andreas Hartung, David Rittinger, Malte Krack\",\"doi\":\"10.1115/1.4063769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, an experimental test rig for friction saturated limit cycle oscillations is proposed to provide a validation basis for corresponding numerical methods. Having in mind the application of turbine blades, an instrumented beam-like structure equipped with an adjustable velocity feedback loop and dry frictional contacts is designed and investigated. After dimensioning the test rig by means of a simplified one dimensional beam model and time domain simulations, the specific requirements of limit cycle oscillations for the design of the frictional contact, the velocity feedback loop and the excitation system are discussed and possible solutions are presented. Also appropriate measuring principles and evaluation techniques are assessed. After commissioning of the test rig, the influence of the negative damping and the normal contact force on the limit cycle oscillations is measured and the practical stability is investigated. The test rig shows linear dynamics for sticking contact and highly repeatable limit cycles. The measured results are discussed regarding the consistency with theory and compared to the predictions of a three dimensional reduced order model solved in frequency domain by the harmonic balance solver OrAgL. It is demonstrated that the numerical modeling strategy is able to accurately reproduce the measured limit cycle oscillations, which stabilized for different contact normal forces and self-excitation levels.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063769\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Friction Saturated Limit Cycle Oscillations - Test Rig Design and Validation of Numerical Prediction Methods
Abstract In this paper, an experimental test rig for friction saturated limit cycle oscillations is proposed to provide a validation basis for corresponding numerical methods. Having in mind the application of turbine blades, an instrumented beam-like structure equipped with an adjustable velocity feedback loop and dry frictional contacts is designed and investigated. After dimensioning the test rig by means of a simplified one dimensional beam model and time domain simulations, the specific requirements of limit cycle oscillations for the design of the frictional contact, the velocity feedback loop and the excitation system are discussed and possible solutions are presented. Also appropriate measuring principles and evaluation techniques are assessed. After commissioning of the test rig, the influence of the negative damping and the normal contact force on the limit cycle oscillations is measured and the practical stability is investigated. The test rig shows linear dynamics for sticking contact and highly repeatable limit cycles. The measured results are discussed regarding the consistency with theory and compared to the predictions of a three dimensional reduced order model solved in frequency domain by the harmonic balance solver OrAgL. It is demonstrated that the numerical modeling strategy is able to accurately reproduce the measured limit cycle oscillations, which stabilized for different contact normal forces and self-excitation levels.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.