一种对抗恐怖组织活动的贝叶斯决策支持系统

Aditi Shenvi, Francis Oliver Bunnin, Jim Q Smith
{"title":"一种对抗恐怖组织活动的贝叶斯决策支持系统","authors":"Aditi Shenvi, Francis Oliver Bunnin, Jim Q Smith","doi":"10.1093/jrsssa/qnac019","DOIUrl":null,"url":null,"abstract":"Abstract We present an integrating decision support system designed to aid security analysts’ monitoring of terrorist groups. The system comprises of (i) a dynamic network model of the level of bilateral communications between individuals and (ii) dynamic graphical models of those individual’s latent threat states. These component models are combined in a statistically coherent manner to provide measures of the imminence of an attack by the terrorist group. Domain knowledge provides the structures of the models, values of parameters and prior distributions over latent variables. Inference of the values is performed using time-series of observed data and the statistical dependencies assumed between said data and model variables. The work draws on social network and graphical models used in sociological, military, and medical fields.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian decision support system for counteracting activities of terrorist groups\",\"authors\":\"Aditi Shenvi, Francis Oliver Bunnin, Jim Q Smith\",\"doi\":\"10.1093/jrsssa/qnac019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present an integrating decision support system designed to aid security analysts’ monitoring of terrorist groups. The system comprises of (i) a dynamic network model of the level of bilateral communications between individuals and (ii) dynamic graphical models of those individual’s latent threat states. These component models are combined in a statistically coherent manner to provide measures of the imminence of an attack by the terrorist group. Domain knowledge provides the structures of the models, values of parameters and prior distributions over latent variables. Inference of the values is performed using time-series of observed data and the statistical dependencies assumed between said data and model variables. The work draws on social network and graphical models used in sociological, military, and medical fields.\",\"PeriodicalId\":49985,\"journal\":{\"name\":\"Journal of the Royal Statistical Society\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnac019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnac019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:本文提出了一个集成决策支持系统,旨在帮助安全分析人员监控恐怖组织。该系统包括(i)个体之间双边通信水平的动态网络模型和(ii)这些个体潜在威胁状态的动态图形模型。这些组成模型以统计上一致的方式组合在一起,以提供对恐怖组织发动袭击的迫切性的衡量标准。领域知识提供了模型的结构、参数的值和潜在变量的先验分布。使用观测数据的时间序列和所述数据与模型变量之间假设的统计依赖关系来执行值的推断。这项工作借鉴了社会学、军事和医学领域使用的社会网络和图形模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian decision support system for counteracting activities of terrorist groups
Abstract We present an integrating decision support system designed to aid security analysts’ monitoring of terrorist groups. The system comprises of (i) a dynamic network model of the level of bilateral communications between individuals and (ii) dynamic graphical models of those individual’s latent threat states. These component models are combined in a statistically coherent manner to provide measures of the imminence of an attack by the terrorist group. Domain knowledge provides the structures of the models, values of parameters and prior distributions over latent variables. Inference of the values is performed using time-series of observed data and the statistical dependencies assumed between said data and model variables. The work draws on social network and graphical models used in sociological, military, and medical fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Bayesian approach to estimate annual bilateral migration flows for South America using census data Exploring Modeling with Data and Differential Equations Using R Calyampudi Radhakrishna (CR) Rao 1920–2023 Representative pure risk estimation by using data from epidemiologic studies, surveys, and registries: estimating risks for minority subgroups Where the bee sucks: a dynamic Bayesian network approach to decision support for pollinator abundance strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1