{"title":"有许多候选预测因子的预测性回归中的样本外可预测性","authors":"Jesús Gonzalo , Jean-Yves Pitarakis","doi":"10.1016/j.ijforecast.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with detecting the presence of out-of-sample predictability in linear predictive regressions with a potentially large set of candidate predictors. We propose a procedure based on out-of-sample MSE comparisons that is implemented in a pairwise manner using one predictor at a time. This results in an aggregate test statistic that is standard normally distributed under the global null hypothesis of no linear predictability. Predictors can be highly persistent, purely stationary, or a combination of both. Upon rejecting the null hypothesis, we introduce a predictor screening procedure designed to identify the most active predictors. An empirical application to key predictors of US economic activity illustrates the usefulness of our methods. It highlights the important forward-looking role played by the series of manufacturing new orders.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1166-1178"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169207023001048/pdfft?md5=80ff4bc94530f3c1aff904ea06341ce6&pid=1-s2.0-S0169207023001048-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Out-of-sample predictability in predictive regressions with many predictor candidates\",\"authors\":\"Jesús Gonzalo , Jean-Yves Pitarakis\",\"doi\":\"10.1016/j.ijforecast.2023.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is concerned with detecting the presence of out-of-sample predictability in linear predictive regressions with a potentially large set of candidate predictors. We propose a procedure based on out-of-sample MSE comparisons that is implemented in a pairwise manner using one predictor at a time. This results in an aggregate test statistic that is standard normally distributed under the global null hypothesis of no linear predictability. Predictors can be highly persistent, purely stationary, or a combination of both. Upon rejecting the null hypothesis, we introduce a predictor screening procedure designed to identify the most active predictors. An empirical application to key predictors of US economic activity illustrates the usefulness of our methods. It highlights the important forward-looking role played by the series of manufacturing new orders.</p></div>\",\"PeriodicalId\":14061,\"journal\":{\"name\":\"International Journal of Forecasting\",\"volume\":\"40 3\",\"pages\":\"Pages 1166-1178\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001048/pdfft?md5=80ff4bc94530f3c1aff904ea06341ce6&pid=1-s2.0-S0169207023001048-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169207023001048\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001048","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Out-of-sample predictability in predictive regressions with many predictor candidates
This paper is concerned with detecting the presence of out-of-sample predictability in linear predictive regressions with a potentially large set of candidate predictors. We propose a procedure based on out-of-sample MSE comparisons that is implemented in a pairwise manner using one predictor at a time. This results in an aggregate test statistic that is standard normally distributed under the global null hypothesis of no linear predictability. Predictors can be highly persistent, purely stationary, or a combination of both. Upon rejecting the null hypothesis, we introduce a predictor screening procedure designed to identify the most active predictors. An empirical application to key predictors of US economic activity illustrates the usefulness of our methods. It highlights the important forward-looking role played by the series of manufacturing new orders.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.