运动理论中的线性半空间问题:抽象表述和状态转换

IF 0.6 4区 数学 Q3 MATHEMATICS International Journal of Mathematics Pub Date : 2023-09-21 DOI:10.1142/s0129167x2350091x
Niclas Bernhoff
{"title":"运动理论中的线性半空间问题:抽象表述和状态转换","authors":"Niclas Bernhoff","doi":"10.1142/s0129167x2350091x","DOIUrl":null,"url":null,"abstract":"Half-space problems in the kinetic theory of gases are of great importance in the study of the asymptotic behavior of solutions of boundary value problems for the Boltzmann equation for small Knudsen numbers. In this work a generally formulated half-space problem, based on generalizations of stationary half-space problems in one spatial variable for the Boltzmann equation - for hard-sphere models of monatomic single species and multicomponent mixtures - is considered. The number of conditions on the indata at the interface needed to obtain well-posedness is investigated. Exponential fast convergence is obtained\"far away\"from the interface. In particular, the exponential decay at regime transitions - where the number of conditions on the indata needed to obtain well-posedness changes - for linearized kinetic half-space problems related to the half-space problem of evaporation and condensation in kinetic theory are considered. The regime transitions correspond to the transition between subsonic and supersonic evaporation/condensation, or the transition between evaporation and condensation. Near the regime transitions, slowly varying modes might occur, preventing uniform exponential speed of convergence there. By imposing extra conditions on the indata at the interface, the slowly varying modes can be eliminated near a regime transition, giving rise to uniform exponential speed of convergence near the regime transition. Values of the velocity of the flow at the far end, for which regime transitions take place are presented for some particular variants of the Boltzmann equation: for monatomic and polyatomic single species and mixtures, and the quantum variant for bosons and fermions.","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Linear Half-Space Problems in Kinetic Theory: Abstract Formulation and Regime Transitions\",\"authors\":\"Niclas Bernhoff\",\"doi\":\"10.1142/s0129167x2350091x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Half-space problems in the kinetic theory of gases are of great importance in the study of the asymptotic behavior of solutions of boundary value problems for the Boltzmann equation for small Knudsen numbers. In this work a generally formulated half-space problem, based on generalizations of stationary half-space problems in one spatial variable for the Boltzmann equation - for hard-sphere models of monatomic single species and multicomponent mixtures - is considered. The number of conditions on the indata at the interface needed to obtain well-posedness is investigated. Exponential fast convergence is obtained\\\"far away\\\"from the interface. In particular, the exponential decay at regime transitions - where the number of conditions on the indata needed to obtain well-posedness changes - for linearized kinetic half-space problems related to the half-space problem of evaporation and condensation in kinetic theory are considered. The regime transitions correspond to the transition between subsonic and supersonic evaporation/condensation, or the transition between evaporation and condensation. Near the regime transitions, slowly varying modes might occur, preventing uniform exponential speed of convergence there. By imposing extra conditions on the indata at the interface, the slowly varying modes can be eliminated near a regime transition, giving rise to uniform exponential speed of convergence near the regime transition. Values of the velocity of the flow at the far end, for which regime transitions take place are presented for some particular variants of the Boltzmann equation: for monatomic and polyatomic single species and mixtures, and the quantum variant for bosons and fermions.\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x2350091x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129167x2350091x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear Half-Space Problems in Kinetic Theory: Abstract Formulation and Regime Transitions
Half-space problems in the kinetic theory of gases are of great importance in the study of the asymptotic behavior of solutions of boundary value problems for the Boltzmann equation for small Knudsen numbers. In this work a generally formulated half-space problem, based on generalizations of stationary half-space problems in one spatial variable for the Boltzmann equation - for hard-sphere models of monatomic single species and multicomponent mixtures - is considered. The number of conditions on the indata at the interface needed to obtain well-posedness is investigated. Exponential fast convergence is obtained"far away"from the interface. In particular, the exponential decay at regime transitions - where the number of conditions on the indata needed to obtain well-posedness changes - for linearized kinetic half-space problems related to the half-space problem of evaporation and condensation in kinetic theory are considered. The regime transitions correspond to the transition between subsonic and supersonic evaporation/condensation, or the transition between evaporation and condensation. Near the regime transitions, slowly varying modes might occur, preventing uniform exponential speed of convergence there. By imposing extra conditions on the indata at the interface, the slowly varying modes can be eliminated near a regime transition, giving rise to uniform exponential speed of convergence near the regime transition. Values of the velocity of the flow at the far end, for which regime transitions take place are presented for some particular variants of the Boltzmann equation: for monatomic and polyatomic single species and mixtures, and the quantum variant for bosons and fermions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
期刊最新文献
Classical and new plumbed homology spheres bounding contractible manifolds and homology balls Seshadri constants on some flag bundles Automorphisms of moduli spaces of principal bundles over a smooth curve Killing spinors and hypersurfaces Kobayashi Complete Domains in Complex Manifolds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1