{"title":"透明脱细胞猪角膜基质病治疗材料的研究与开发","authors":"Yoshihide Hashimoto","doi":"10.21820/23987073.2023.3.49","DOIUrl":null,"url":null,"abstract":"Investigations to discover potential corneal stromal substitutes to effectively treat corneal stromal disease tend to focus on transparent and bio-inert synthetic polymer materials and hydrogel materials. More recent studies are looking at alternative therapeutic materials that utilise corneas from pigs. Assistant Professor Yoshihide Hashimoto, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan, is part of a team developing functional materials and therapeutic techniques to restore the function of damaged biological tissues and organs based on biomaterials and bioengineering. At present, the researchers are focused on restoring the function of corneas, but the research has the potential for broader applications. After blindness caused by clouding or shape change, corneal transplantation is the only effective treatment but there is a worldwide shortage of donated human corneas. To establish an advanced treatment for corneal diseases in combination with cell therapy, reliable artificial corneal stroma is required and Hashimoto and the team are exploring the potential of highly transparent decellularised porcine cornea for the treatment of corneal stroma disease. This has potential to overcome the issues associated with existing treatments and can also be developed for reconstruction of full-thickness cornea. In decellularised corneas, cellular components are removed from animal-derived corneal tissue. The method the team is using does not use surfactants, which means the functional proteins and tissue structure can be retained.","PeriodicalId":13517,"journal":{"name":"Impact","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and development on therapeutic materials for corneal stromal disease consisting of transparent decellularised porcine corneas\",\"authors\":\"Yoshihide Hashimoto\",\"doi\":\"10.21820/23987073.2023.3.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigations to discover potential corneal stromal substitutes to effectively treat corneal stromal disease tend to focus on transparent and bio-inert synthetic polymer materials and hydrogel materials. More recent studies are looking at alternative therapeutic materials that utilise corneas from pigs. Assistant Professor Yoshihide Hashimoto, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan, is part of a team developing functional materials and therapeutic techniques to restore the function of damaged biological tissues and organs based on biomaterials and bioengineering. At present, the researchers are focused on restoring the function of corneas, but the research has the potential for broader applications. After blindness caused by clouding or shape change, corneal transplantation is the only effective treatment but there is a worldwide shortage of donated human corneas. To establish an advanced treatment for corneal diseases in combination with cell therapy, reliable artificial corneal stroma is required and Hashimoto and the team are exploring the potential of highly transparent decellularised porcine cornea for the treatment of corneal stroma disease. This has potential to overcome the issues associated with existing treatments and can also be developed for reconstruction of full-thickness cornea. In decellularised corneas, cellular components are removed from animal-derived corneal tissue. The method the team is using does not use surfactants, which means the functional proteins and tissue structure can be retained.\",\"PeriodicalId\":13517,\"journal\":{\"name\":\"Impact\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21820/23987073.2023.3.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21820/23987073.2023.3.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research and development on therapeutic materials for corneal stromal disease consisting of transparent decellularised porcine corneas
Investigations to discover potential corneal stromal substitutes to effectively treat corneal stromal disease tend to focus on transparent and bio-inert synthetic polymer materials and hydrogel materials. More recent studies are looking at alternative therapeutic materials that utilise corneas from pigs. Assistant Professor Yoshihide Hashimoto, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan, is part of a team developing functional materials and therapeutic techniques to restore the function of damaged biological tissues and organs based on biomaterials and bioengineering. At present, the researchers are focused on restoring the function of corneas, but the research has the potential for broader applications. After blindness caused by clouding or shape change, corneal transplantation is the only effective treatment but there is a worldwide shortage of donated human corneas. To establish an advanced treatment for corneal diseases in combination with cell therapy, reliable artificial corneal stroma is required and Hashimoto and the team are exploring the potential of highly transparent decellularised porcine cornea for the treatment of corneal stroma disease. This has potential to overcome the issues associated with existing treatments and can also be developed for reconstruction of full-thickness cornea. In decellularised corneas, cellular components are removed from animal-derived corneal tissue. The method the team is using does not use surfactants, which means the functional proteins and tissue structure can be retained.