Meghan McGraw, Gabrielle Gilmer, Juliana Bergmann, Vishnu Seshan, Kai Wang, David Pekker, Michel Modo, Fabrisia Ambrosio
{"title":"绘制磁场对神经再生和修复影响的景观:综合系统回顾、数学模型和元分析","authors":"Meghan McGraw, Gabrielle Gilmer, Juliana Bergmann, Vishnu Seshan, Kai Wang, David Pekker, Michel Modo, Fabrisia Ambrosio","doi":"10.1155/2023/5038317","DOIUrl":null,"url":null,"abstract":"Magnetic field exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new. To better understand how magnetic fields affect neural repair in vitro, we started by performing a systematic review of publications that studied neural repair responses to magnetic fields. The 38 included articles were highly heterogeneous, representing 13 cell types, magnetic field magnitudes of 0.0002–10,000 mT with frequencies of 0–150 Hz, and exposure times ranging from one hour to several weeks. Mathematical modeling based on data from the included manuscripts revealed higher magnetic field magnitudes enhance neural progenitor cell (NPC) viability. Finally, for those regenerative processes not influenced by magnitude, frequency, or time, we integrated the data by meta-analyses. Results revealed that magnetic field exposure increases NPC proliferation while decreasing astrocytic differentiation. Collectively, our approach identified neural repair processes that may be most responsive to magnetic field exposure.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"78 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping the Landscape of Magnetic Field Effects on Neural Regeneration and Repair: A Combined Systematic Review, Mathematical Model, and Meta-Analysis\",\"authors\":\"Meghan McGraw, Gabrielle Gilmer, Juliana Bergmann, Vishnu Seshan, Kai Wang, David Pekker, Michel Modo, Fabrisia Ambrosio\",\"doi\":\"10.1155/2023/5038317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic field exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new. To better understand how magnetic fields affect neural repair in vitro, we started by performing a systematic review of publications that studied neural repair responses to magnetic fields. The 38 included articles were highly heterogeneous, representing 13 cell types, magnetic field magnitudes of 0.0002–10,000 mT with frequencies of 0–150 Hz, and exposure times ranging from one hour to several weeks. Mathematical modeling based on data from the included manuscripts revealed higher magnetic field magnitudes enhance neural progenitor cell (NPC) viability. Finally, for those regenerative processes not influenced by magnitude, frequency, or time, we integrated the data by meta-analyses. Results revealed that magnetic field exposure increases NPC proliferation while decreasing astrocytic differentiation. Collectively, our approach identified neural repair processes that may be most responsive to magnetic field exposure.\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5038317\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5038317","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Mapping the Landscape of Magnetic Field Effects on Neural Regeneration and Repair: A Combined Systematic Review, Mathematical Model, and Meta-Analysis
Magnetic field exposure is a well-established diagnostic tool. However, its use as a therapeutic in regenerative medicine is relatively new. To better understand how magnetic fields affect neural repair in vitro, we started by performing a systematic review of publications that studied neural repair responses to magnetic fields. The 38 included articles were highly heterogeneous, representing 13 cell types, magnetic field magnitudes of 0.0002–10,000 mT with frequencies of 0–150 Hz, and exposure times ranging from one hour to several weeks. Mathematical modeling based on data from the included manuscripts revealed higher magnetic field magnitudes enhance neural progenitor cell (NPC) viability. Finally, for those regenerative processes not influenced by magnitude, frequency, or time, we integrated the data by meta-analyses. Results revealed that magnetic field exposure increases NPC proliferation while decreasing astrocytic differentiation. Collectively, our approach identified neural repair processes that may be most responsive to magnetic field exposure.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.