{"title":"海洋蛇纹岩:深层氮循环的潜在关键储层","authors":"Kan Li, Amber Jie Yu, Peter H. Barry, Long Li","doi":"10.1130/g51464.1","DOIUrl":null,"url":null,"abstract":"Serpentinized oceanic peridotites might be an important reservoir delivering volatile elements including nitrogen (N) into the mantle via subduction. To determine N sources and estimate the budget of alteration-added secondary N in the oceanic mantle peridotite reservoir, we examined oceanic serpentinites from four Ocean Drilling Program (ODP) sites in the Pacific and Atlantic Oceans. Our results showed that, despite large variation in serpentinization condition (high temperatures up to >350 °C at Holes 895D, 1271B, and 920D; low temperatures <150 °C at Hole 1274A), serpentinites from all sites displayed ubiquitous and similar magnitude of N enrichment (3.2−18.6 ppm) from sediments/seawater sources (δ15N = −3.3‰ to +4.4‰), and these values were significantly elevated relative to the low N concentration (0.04−2.0 ppm) and δ15N value (−5‰ ± 2‰) of the depleted mantle. Based on these data, the serpentinized oceanic mantle is estimated to contribute 0.4 ± 0.2−14.7 ± 6.9 × 109 mol N annually to global subduction zones. Although this flux is smaller than that of subducting sediments (57 × 109 mol·yr−1), comparison between oceanic serpentinites and meta-serpentinites from subduction zones suggests that N can be effectively retained in serpentinites during prograde metamorphism. This implies that the serpentinized slab mantle could be a critical reservoir to deliver N enriched in 15N to the mantle (at least 70 km depth) and potentially to the deepest portions of the mantle sampled by deep-rooted mantle plumes.","PeriodicalId":12642,"journal":{"name":"Geology","volume":"23 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oceanic serpentinites: A potentially critical reservoir for deep nitrogen recycling\",\"authors\":\"Kan Li, Amber Jie Yu, Peter H. Barry, Long Li\",\"doi\":\"10.1130/g51464.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Serpentinized oceanic peridotites might be an important reservoir delivering volatile elements including nitrogen (N) into the mantle via subduction. To determine N sources and estimate the budget of alteration-added secondary N in the oceanic mantle peridotite reservoir, we examined oceanic serpentinites from four Ocean Drilling Program (ODP) sites in the Pacific and Atlantic Oceans. Our results showed that, despite large variation in serpentinization condition (high temperatures up to >350 °C at Holes 895D, 1271B, and 920D; low temperatures <150 °C at Hole 1274A), serpentinites from all sites displayed ubiquitous and similar magnitude of N enrichment (3.2−18.6 ppm) from sediments/seawater sources (δ15N = −3.3‰ to +4.4‰), and these values were significantly elevated relative to the low N concentration (0.04−2.0 ppm) and δ15N value (−5‰ ± 2‰) of the depleted mantle. Based on these data, the serpentinized oceanic mantle is estimated to contribute 0.4 ± 0.2−14.7 ± 6.9 × 109 mol N annually to global subduction zones. Although this flux is smaller than that of subducting sediments (57 × 109 mol·yr−1), comparison between oceanic serpentinites and meta-serpentinites from subduction zones suggests that N can be effectively retained in serpentinites during prograde metamorphism. This implies that the serpentinized slab mantle could be a critical reservoir to deliver N enriched in 15N to the mantle (at least 70 km depth) and potentially to the deepest portions of the mantle sampled by deep-rooted mantle plumes.\",\"PeriodicalId\":12642,\"journal\":{\"name\":\"Geology\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/g51464.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g51464.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Oceanic serpentinites: A potentially critical reservoir for deep nitrogen recycling
Serpentinized oceanic peridotites might be an important reservoir delivering volatile elements including nitrogen (N) into the mantle via subduction. To determine N sources and estimate the budget of alteration-added secondary N in the oceanic mantle peridotite reservoir, we examined oceanic serpentinites from four Ocean Drilling Program (ODP) sites in the Pacific and Atlantic Oceans. Our results showed that, despite large variation in serpentinization condition (high temperatures up to >350 °C at Holes 895D, 1271B, and 920D; low temperatures <150 °C at Hole 1274A), serpentinites from all sites displayed ubiquitous and similar magnitude of N enrichment (3.2−18.6 ppm) from sediments/seawater sources (δ15N = −3.3‰ to +4.4‰), and these values were significantly elevated relative to the low N concentration (0.04−2.0 ppm) and δ15N value (−5‰ ± 2‰) of the depleted mantle. Based on these data, the serpentinized oceanic mantle is estimated to contribute 0.4 ± 0.2−14.7 ± 6.9 × 109 mol N annually to global subduction zones. Although this flux is smaller than that of subducting sediments (57 × 109 mol·yr−1), comparison between oceanic serpentinites and meta-serpentinites from subduction zones suggests that N can be effectively retained in serpentinites during prograde metamorphism. This implies that the serpentinized slab mantle could be a critical reservoir to deliver N enriched in 15N to the mantle (at least 70 km depth) and potentially to the deepest portions of the mantle sampled by deep-rooted mantle plumes.
期刊介绍:
Published since 1973, Geology features rapid publication of about 23 refereed short (four-page) papers each month. Articles cover all earth-science disciplines and include new investigations and provocative topics. Professional geologists and university-level students in the earth sciences use this widely read journal to keep up with scientific research trends. The online forum section facilitates author-reader dialog. Includes color and occasional large-format illustrations on oversized loose inserts.