Wei Xu, Bo Song, Baowen Wang, Jizhong Shi, Yue Zhao, Huiyuan Zhang, Jianshe Wei, Xiaofeng Han, Xiaozhou Ye, Xiaoyan Wei
{"title":"吐鲁番-哈密地块晚古生代岩石的古地磁和年代学新结果及其对阿尔泰山西部地球动力学演化的意义","authors":"Wei Xu, Bo Song, Baowen Wang, Jizhong Shi, Yue Zhao, Huiyuan Zhang, Jianshe Wei, Xiaofeng Han, Xiaozhou Ye, Xiaoyan Wei","doi":"10.1130/b37055.1","DOIUrl":null,"url":null,"abstract":"How and when the ocean-continent transition started in the western Altaids remain controversial. The paleomagnetic signals recorded by late Paleozoic rocks in the Turpan-Hami block can provide critical constraints on this issue. We conducted a new combined paleomagnetic and geochronologic study on the late Paleozoic rocks from the Turpan-Hami block. Laser ablation−inductively coupled plasma−mass spectrometry zircon U-Pb dating of volcanic beds from the Upper Carboniferous Qijiaojing and Julideneng Formations yielded ages of 313.1 ± 4.3 Ma and 309.6 ± 1.9 Ma to 308.1 ± 3.6 Ma, respectively. Meanwhile, the U-Pb age of the granite intruding the Julideneng Formation is 300.3 ± 2.4 Ma. Passing a series of fold tests, the characteristic remanent magnetization (ChRM) directions of the Qijiaojing Formation are likely primary and consistent with the Kiaman reversed superchron (ca. 319−267 Ma). However, the ChRM values of the Dananhu (Middle Devonian) and Julideneng Formations all represent reverse polarity with negative fold tests, which indicate remagnetizations related to the magmatic thermal events during the late Carboniferous. Thus, two high-quality paleomagnetic poles were obtained for the periods ca. 313−308 Ma at 44.4°N, 177.3°E (K = 22.1, A95 = 8.0°) and ca. 300 Ma at 47.8°N, 173.9°E (K = 116.0, A95 = 4.8°), respectively. Comparison with published coeval paleomagnetic poles of the blocks on both sides of the Tianshan sutures suggests that the central oceanic basin of the western Paleo-Asian Ocean (between the Siberian and Tarim blocks) had been closed since the late Carboniferous (ca. 310 Ma), apart from remnant seas. In addition, a sizeable clockwise rotation (∼58°) of the Turpan-Hami block had taken place during the early Permian, with a scissor-style shrinking of the remnant Bogda marine basin in the meantime. This study provides a new perspective for understanding the tectonic evolution of the western Altaids.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":"24 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New paleomagnetic and geochronologic results from late Paleozoic rocks in the Turfan-Hami block (NW China) and implications for the geodynamic evolution of the western Altaids\",\"authors\":\"Wei Xu, Bo Song, Baowen Wang, Jizhong Shi, Yue Zhao, Huiyuan Zhang, Jianshe Wei, Xiaofeng Han, Xiaozhou Ye, Xiaoyan Wei\",\"doi\":\"10.1130/b37055.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How and when the ocean-continent transition started in the western Altaids remain controversial. The paleomagnetic signals recorded by late Paleozoic rocks in the Turpan-Hami block can provide critical constraints on this issue. We conducted a new combined paleomagnetic and geochronologic study on the late Paleozoic rocks from the Turpan-Hami block. Laser ablation−inductively coupled plasma−mass spectrometry zircon U-Pb dating of volcanic beds from the Upper Carboniferous Qijiaojing and Julideneng Formations yielded ages of 313.1 ± 4.3 Ma and 309.6 ± 1.9 Ma to 308.1 ± 3.6 Ma, respectively. Meanwhile, the U-Pb age of the granite intruding the Julideneng Formation is 300.3 ± 2.4 Ma. Passing a series of fold tests, the characteristic remanent magnetization (ChRM) directions of the Qijiaojing Formation are likely primary and consistent with the Kiaman reversed superchron (ca. 319−267 Ma). However, the ChRM values of the Dananhu (Middle Devonian) and Julideneng Formations all represent reverse polarity with negative fold tests, which indicate remagnetizations related to the magmatic thermal events during the late Carboniferous. Thus, two high-quality paleomagnetic poles were obtained for the periods ca. 313−308 Ma at 44.4°N, 177.3°E (K = 22.1, A95 = 8.0°) and ca. 300 Ma at 47.8°N, 173.9°E (K = 116.0, A95 = 4.8°), respectively. Comparison with published coeval paleomagnetic poles of the blocks on both sides of the Tianshan sutures suggests that the central oceanic basin of the western Paleo-Asian Ocean (between the Siberian and Tarim blocks) had been closed since the late Carboniferous (ca. 310 Ma), apart from remnant seas. In addition, a sizeable clockwise rotation (∼58°) of the Turpan-Hami block had taken place during the early Permian, with a scissor-style shrinking of the remnant Bogda marine basin in the meantime. This study provides a new perspective for understanding the tectonic evolution of the western Altaids.\",\"PeriodicalId\":55104,\"journal\":{\"name\":\"Geological Society of America Bulletin\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society of America Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/b37055.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b37055.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
New paleomagnetic and geochronologic results from late Paleozoic rocks in the Turfan-Hami block (NW China) and implications for the geodynamic evolution of the western Altaids
How and when the ocean-continent transition started in the western Altaids remain controversial. The paleomagnetic signals recorded by late Paleozoic rocks in the Turpan-Hami block can provide critical constraints on this issue. We conducted a new combined paleomagnetic and geochronologic study on the late Paleozoic rocks from the Turpan-Hami block. Laser ablation−inductively coupled plasma−mass spectrometry zircon U-Pb dating of volcanic beds from the Upper Carboniferous Qijiaojing and Julideneng Formations yielded ages of 313.1 ± 4.3 Ma and 309.6 ± 1.9 Ma to 308.1 ± 3.6 Ma, respectively. Meanwhile, the U-Pb age of the granite intruding the Julideneng Formation is 300.3 ± 2.4 Ma. Passing a series of fold tests, the characteristic remanent magnetization (ChRM) directions of the Qijiaojing Formation are likely primary and consistent with the Kiaman reversed superchron (ca. 319−267 Ma). However, the ChRM values of the Dananhu (Middle Devonian) and Julideneng Formations all represent reverse polarity with negative fold tests, which indicate remagnetizations related to the magmatic thermal events during the late Carboniferous. Thus, two high-quality paleomagnetic poles were obtained for the periods ca. 313−308 Ma at 44.4°N, 177.3°E (K = 22.1, A95 = 8.0°) and ca. 300 Ma at 47.8°N, 173.9°E (K = 116.0, A95 = 4.8°), respectively. Comparison with published coeval paleomagnetic poles of the blocks on both sides of the Tianshan sutures suggests that the central oceanic basin of the western Paleo-Asian Ocean (between the Siberian and Tarim blocks) had been closed since the late Carboniferous (ca. 310 Ma), apart from remnant seas. In addition, a sizeable clockwise rotation (∼58°) of the Turpan-Hami block had taken place during the early Permian, with a scissor-style shrinking of the remnant Bogda marine basin in the meantime. This study provides a new perspective for understanding the tectonic evolution of the western Altaids.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.