优化计划外垃圾收集:智能城市物联网系统,摩洛哥丹吉尔案例研究

IF 2.1 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Smart Cities Pub Date : 2023-10-29 DOI:10.1049/smc2.12069
Meryam Belhiah, Moaad El Aboudi, Soumia Ziti
{"title":"优化计划外垃圾收集:智能城市物联网系统,摩洛哥丹吉尔案例研究","authors":"Meryam Belhiah,&nbsp;Moaad El Aboudi,&nbsp;Soumia Ziti","doi":"10.1049/smc2.12069","DOIUrl":null,"url":null,"abstract":"<p>An innovative approach to the collection of unplanned municipal waste through the integration of an Internet of Things (IoT) enabled system in urban settings is presented. Despite significant strides in waste management optimisation, traditional systems have largely overlooked the management of occasional or seasonal waste such as green waste, wild dump, and construction debris. The authors seek to address this gap by deploying an IoT-enabled system to optimise resource utilisation and efficiency. Building on existing infrastructures for real-time tracking of waste collection circuits, equipment, and bin filling levels, the system incorporates an additional module to manage unpredictable waste categories. The system collects field data leveraging existing resources with minimal investment. To manage the sporadic nature of these waste types, the system employs a flexible approach with the use of sensors and algorithms for dynamic route planning and waste collection. Using the city of Tangier, Morocco, as a case study, a comprehensive methodology for waste location capture, GIS mapping, priority-based route identification, scenario testing, and operational cost estimation is implemented. A modified version of the Contraction Hierarchies algorithm is applied to compute optimal waste collection paths, ensuring timely and efficient waste removal while minimising environmental impact. The findings from this research promise significant implications for municipal waste collection, particularly in developing countries, opening new possibilities for sustainable waste management practices in smart cities.</p>","PeriodicalId":34740,"journal":{"name":"IET Smart Cities","volume":"6 1","pages":"27-40"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12069","citationCount":"0","resultStr":"{\"title\":\"Optimising unplanned waste collection: An IoT-enabled system for smart cities, a case study in Tangier, Morocco\",\"authors\":\"Meryam Belhiah,&nbsp;Moaad El Aboudi,&nbsp;Soumia Ziti\",\"doi\":\"10.1049/smc2.12069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An innovative approach to the collection of unplanned municipal waste through the integration of an Internet of Things (IoT) enabled system in urban settings is presented. Despite significant strides in waste management optimisation, traditional systems have largely overlooked the management of occasional or seasonal waste such as green waste, wild dump, and construction debris. The authors seek to address this gap by deploying an IoT-enabled system to optimise resource utilisation and efficiency. Building on existing infrastructures for real-time tracking of waste collection circuits, equipment, and bin filling levels, the system incorporates an additional module to manage unpredictable waste categories. The system collects field data leveraging existing resources with minimal investment. To manage the sporadic nature of these waste types, the system employs a flexible approach with the use of sensors and algorithms for dynamic route planning and waste collection. Using the city of Tangier, Morocco, as a case study, a comprehensive methodology for waste location capture, GIS mapping, priority-based route identification, scenario testing, and operational cost estimation is implemented. A modified version of the Contraction Hierarchies algorithm is applied to compute optimal waste collection paths, ensuring timely and efficient waste removal while minimising environmental impact. The findings from this research promise significant implications for municipal waste collection, particularly in developing countries, opening new possibilities for sustainable waste management practices in smart cities.</p>\",\"PeriodicalId\":34740,\"journal\":{\"name\":\"IET Smart Cities\",\"volume\":\"6 1\",\"pages\":\"27-40\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smc2.12069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Smart Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smc2.12069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种通过整合城市环境中的物联网(IoT)系统来收集计划外城市垃圾的创新方法。尽管在优化废物管理方面取得了长足进步,但传统系统在很大程度上忽视了对偶发性或季节性废物的管理,如绿色废物、野生垃圾和建筑垃圾。作者试图通过部署物联网系统来优化资源利用和效率,从而弥补这一不足。该系统以现有的实时跟踪垃圾收集线路、设备和垃圾桶装载水平的基础设施为基础,增加了一个模块来管理不可预测的垃圾类别。该系统利用现有资源收集现场数据,投资极少。为了管理这些零星垃圾,该系统采用了一种灵活的方法,利用传感器和算法进行动态路线规划和垃圾收集。该系统以摩洛哥丹吉尔市为案例,实施了一套全面的方法,包括垃圾位置捕捉、地理信息系统制图、基于优先级的路线识别、情景测试和运营成本估算。应用改进版的 "收缩层次 "算法计算最佳垃圾收集路径,确保及时、高效地清除垃圾,同时最大限度地减少对环境的影响。这项研究的结果有望对城市废物收集产生重大影响,尤其是在发展中国家,为智能城市的可持续废物管理实践开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimising unplanned waste collection: An IoT-enabled system for smart cities, a case study in Tangier, Morocco

An innovative approach to the collection of unplanned municipal waste through the integration of an Internet of Things (IoT) enabled system in urban settings is presented. Despite significant strides in waste management optimisation, traditional systems have largely overlooked the management of occasional or seasonal waste such as green waste, wild dump, and construction debris. The authors seek to address this gap by deploying an IoT-enabled system to optimise resource utilisation and efficiency. Building on existing infrastructures for real-time tracking of waste collection circuits, equipment, and bin filling levels, the system incorporates an additional module to manage unpredictable waste categories. The system collects field data leveraging existing resources with minimal investment. To manage the sporadic nature of these waste types, the system employs a flexible approach with the use of sensors and algorithms for dynamic route planning and waste collection. Using the city of Tangier, Morocco, as a case study, a comprehensive methodology for waste location capture, GIS mapping, priority-based route identification, scenario testing, and operational cost estimation is implemented. A modified version of the Contraction Hierarchies algorithm is applied to compute optimal waste collection paths, ensuring timely and efficient waste removal while minimising environmental impact. The findings from this research promise significant implications for municipal waste collection, particularly in developing countries, opening new possibilities for sustainable waste management practices in smart cities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Smart Cities
IET Smart Cities Social Sciences-Urban Studies
CiteScore
7.70
自引率
3.20%
发文量
25
审稿时长
21 weeks
期刊最新文献
Guest Editorial: Smart cities 2.0: How Artificial Intelligence and Internet of Things are transforming urban living Smart city fire surveillance: A deep state-space model with intelligent agents Securing smart cities through machine learning: A honeypot-driven approach to attack detection in Internet of Things ecosystems Smart resilience through IoT-enabled natural disaster management: A COVID-19 response in São Paulo state Optimising air quality prediction in smart cities with hybrid particle swarm optimization-long-short term memory-recurrent neural network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1