{"title":"智能车辆到电网(V2G)系统的混合可再生能源","authors":"Sairoel Amertet, Girma Gebresenbet","doi":"10.1177/01445987231209770","DOIUrl":null,"url":null,"abstract":"Wind and sunlight are increasingly being exploited as energy supplies that never run out. Additionally, renewable energy resources, including sun, wind, and geothermal heat, are being used for different technologies. It was considered the use of hybridized wind-solar energy resources in smart vehicle technology. A thorough understanding of an integrated framework of the hybridized renewable energy for smart vehicle-to-grid (V2G) systems is essential and required to further identify and perhaps maximize existing opportunities. Aiming to develop a vehicle-to-grid (V2G) system where the smart vehicle runs on stored sunshine and wind energy, and vehicle batteries store energy and release it to the electricity grid in peak demand periods. To achieve this aim, mathematical models for solar and wind systems were created and entire 24-h simulations were run for case studies of three smart vehicles, which were assessed for different scenarios and circumstances, using the MATLAB/SIMULINK environment. The estimated values obtained were home load 10 MW, power factor 0.15 MVA, industrial load 0.16 MVA, and smart car-to-grid, solar panel farm, and wind farm power of 4 MW, 8 MW, and 4.5 MW, respectively. Therefore, the hybridized wind-solar energy sources were applicable for all three smart vehicles considered.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridized Renewable Energy for Smart Vehicle-to-Grid (V2G) Systems\",\"authors\":\"Sairoel Amertet, Girma Gebresenbet\",\"doi\":\"10.1177/01445987231209770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind and sunlight are increasingly being exploited as energy supplies that never run out. Additionally, renewable energy resources, including sun, wind, and geothermal heat, are being used for different technologies. It was considered the use of hybridized wind-solar energy resources in smart vehicle technology. A thorough understanding of an integrated framework of the hybridized renewable energy for smart vehicle-to-grid (V2G) systems is essential and required to further identify and perhaps maximize existing opportunities. Aiming to develop a vehicle-to-grid (V2G) system where the smart vehicle runs on stored sunshine and wind energy, and vehicle batteries store energy and release it to the electricity grid in peak demand periods. To achieve this aim, mathematical models for solar and wind systems were created and entire 24-h simulations were run for case studies of three smart vehicles, which were assessed for different scenarios and circumstances, using the MATLAB/SIMULINK environment. The estimated values obtained were home load 10 MW, power factor 0.15 MVA, industrial load 0.16 MVA, and smart car-to-grid, solar panel farm, and wind farm power of 4 MW, 8 MW, and 4.5 MW, respectively. Therefore, the hybridized wind-solar energy sources were applicable for all three smart vehicles considered.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231209770\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987231209770","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Hybridized Renewable Energy for Smart Vehicle-to-Grid (V2G) Systems
Wind and sunlight are increasingly being exploited as energy supplies that never run out. Additionally, renewable energy resources, including sun, wind, and geothermal heat, are being used for different technologies. It was considered the use of hybridized wind-solar energy resources in smart vehicle technology. A thorough understanding of an integrated framework of the hybridized renewable energy for smart vehicle-to-grid (V2G) systems is essential and required to further identify and perhaps maximize existing opportunities. Aiming to develop a vehicle-to-grid (V2G) system where the smart vehicle runs on stored sunshine and wind energy, and vehicle batteries store energy and release it to the electricity grid in peak demand periods. To achieve this aim, mathematical models for solar and wind systems were created and entire 24-h simulations were run for case studies of three smart vehicles, which were assessed for different scenarios and circumstances, using the MATLAB/SIMULINK environment. The estimated values obtained were home load 10 MW, power factor 0.15 MVA, industrial load 0.16 MVA, and smart car-to-grid, solar panel farm, and wind farm power of 4 MW, 8 MW, and 4.5 MW, respectively. Therefore, the hybridized wind-solar energy sources were applicable for all three smart vehicles considered.
期刊介绍:
Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.