一种新型膨胀水泥管的研制

T. Chen, Y. Li, K.-M. Habib, H. S. Mitri
{"title":"一种新型膨胀水泥管的研制","authors":"T. Chen, Y. Li, K.-M. Habib, H. S. Mitri","doi":"10.1080/19236026.2023.2239106","DOIUrl":null,"url":null,"abstract":"ABSTRACTExpansive cement (EC) is generally a slurry that it is poured into vertical holes for surface rock breakage applications. This paper describes the development of a novel cartridge for extending EC applications from gravity-filled vertical holes to horizontal, uptilted, and wet boreholes. Four cartridge prototypes were made from low-cost and readily available plastics using three-dimensional printers. The performance of each cartridge was investigated in unconfined rock slab tests. The polylactic acid (PLA) cartridge was found to be superior to the thermoplastic polyurethane, polyethylene terephthalate glycol, and acrylonitrile butadiene styrene cartridges. Through partial heat containment, the PLA cartridge accelerated the EC hydraulic reaction and shortened the onset of rock destruction by 30% relative to vertical, gravity-filled EC. Finally, rock breakage with EC was demonstrated in an underground mine using PLA cartridges. This novel type of cartridge could not only suit various applications beyond the scope of the current EC surface applications but also significantly improve the rock fracturing efficiency of EC.RÉSUMÉLe ciment expansif (EC) est généralement une boue que l’on verse dans des trous verticaux pour briser la roche en surface. Cet article décrit le développement d’une nouvelle cartouche permettant d’étendre les applications du ciment expansif des trous verticaux remplis par gravité aux trous de forage horizontaux, inclinés et humides. Quatre prototypes de cartouches ont été fabriqués à l’aide d’imprimantes tridimensionnelles à partir de plastiques peu coûteux et facilement disponibles. Les performances de chaque cartouche ont été étudiées lors d’essais en dalles rocheuses non confinées.La cartouche en acide polylactique (PLA, de l’anglais polylactic acid) s’est avérée supérieure aux cartouches en polyuréthane thermoplastique, en polyéthyléne téréphtalate glycol et en acrylonitrile butadiéne styréne. Grâce au confinement partiel de la chaleur, la cartouche PLA a accéléré la réaction hydraulique de l’EC et a raccourci le début de la destruction de la roche de 30 % par rapport à l’EC verticale remplie par gravité. Enfin, la rupture de la roche avec l’EC a été démontrée dans une mine souterraine à l’aide de cartouches en PLA. Ce nouveau type de cartouche pourrait non seulement convenir à diverses applications dépassant le cadre des applications actuelles de l’EC en surface, mais aussi améliorer de maniére significative l’efficacité de la fracturation de la roche par l’EC.KEYWORDS: Expansive cement (EC)Field applicationsLaboratory testsNon-explosive rock breakagePolylactic acid (PLA)Soundless chemical demolition agentsMOTS-CLÉS: acide polylactique (PLA)agents de démolitionciment expansif (EC)applications sur le terrainessais de laboratoirerupture de roche non explosif DISCLOSURE STATEMENTNo potential conflict of interest was reported by the author(s).REVIEW STATEMENTThis article was reviewed and approved for publication by the Maintenance, Engineering and Reliability Society of the Canadian Institute of Mining, Metallurgy and Petroleum.AUTHORSHIP CONTRIBUTION STATEMENTTuo Chen: Conceptualization, methodology, formal analysis, investigation, data curation, writing – original draft. Yizhuo Li: Writing, visualization, testing. Kelly Habib: Data curation, writing, and project administration. Hani S. Mitri: Reviewing, editing, and funding acquisition.Additional informationFundingThis work was financially supported by a research grant from Natural Resources Canada, Clean Growth Program, Grant No. CGP-17-1003, and industry partner Newmont Corporation. The authors are grateful for their support.Notes on contributorsT. ChenTuo Chen holds both Master of Engineering (MEng) and Doctor of Philosophy (PhD) degrees from McGill University. His areas of expertise include the explosive-free rock fracturing method, numerical modeling of mining-induced seismicity, and the design of sill pillars and crown pillars in underground mines.Y. LiYizhuo Li is a PhD candidate in Mining Engineering at McGill University. She is conducting research in McGill’s Mine Design and Numerical Modelling Laboratory while also working as a teaching assistant in the department. Her current research focuses on stress measurement and stability assessment for underground mining.K.-M. HabibKelly Habib completed her PhD in Mining Engineering at McGill University in December 2022. She holds a BSc in Chemistry from University of Ottawa and an MSc in Mining Engineering from McGill University. Her graduate studies mainly revolved around the development of EC for rock breakage in underground mines.H. S. MitriHani S. Mitri is Professor of Mining Engineering at McGill University and founder of McGill’s Mine Design and Numerical Modelling Laboratory. His teaching, research, and consulting activities relate to mine design and rock mechanics with numerical modelling. He is a registered professional engineer in Quebec and a CIM Fellow.","PeriodicalId":197002,"journal":{"name":"CIM Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a novel cartridge for expansive cement application to hard rock breakage\",\"authors\":\"T. Chen, Y. Li, K.-M. Habib, H. S. Mitri\",\"doi\":\"10.1080/19236026.2023.2239106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTExpansive cement (EC) is generally a slurry that it is poured into vertical holes for surface rock breakage applications. This paper describes the development of a novel cartridge for extending EC applications from gravity-filled vertical holes to horizontal, uptilted, and wet boreholes. Four cartridge prototypes were made from low-cost and readily available plastics using three-dimensional printers. The performance of each cartridge was investigated in unconfined rock slab tests. The polylactic acid (PLA) cartridge was found to be superior to the thermoplastic polyurethane, polyethylene terephthalate glycol, and acrylonitrile butadiene styrene cartridges. Through partial heat containment, the PLA cartridge accelerated the EC hydraulic reaction and shortened the onset of rock destruction by 30% relative to vertical, gravity-filled EC. Finally, rock breakage with EC was demonstrated in an underground mine using PLA cartridges. This novel type of cartridge could not only suit various applications beyond the scope of the current EC surface applications but also significantly improve the rock fracturing efficiency of EC.RÉSUMÉLe ciment expansif (EC) est généralement une boue que l’on verse dans des trous verticaux pour briser la roche en surface. Cet article décrit le développement d’une nouvelle cartouche permettant d’étendre les applications du ciment expansif des trous verticaux remplis par gravité aux trous de forage horizontaux, inclinés et humides. Quatre prototypes de cartouches ont été fabriqués à l’aide d’imprimantes tridimensionnelles à partir de plastiques peu coûteux et facilement disponibles. Les performances de chaque cartouche ont été étudiées lors d’essais en dalles rocheuses non confinées.La cartouche en acide polylactique (PLA, de l’anglais polylactic acid) s’est avérée supérieure aux cartouches en polyuréthane thermoplastique, en polyéthyléne téréphtalate glycol et en acrylonitrile butadiéne styréne. Grâce au confinement partiel de la chaleur, la cartouche PLA a accéléré la réaction hydraulique de l’EC et a raccourci le début de la destruction de la roche de 30 % par rapport à l’EC verticale remplie par gravité. Enfin, la rupture de la roche avec l’EC a été démontrée dans une mine souterraine à l’aide de cartouches en PLA. Ce nouveau type de cartouche pourrait non seulement convenir à diverses applications dépassant le cadre des applications actuelles de l’EC en surface, mais aussi améliorer de maniére significative l’efficacité de la fracturation de la roche par l’EC.KEYWORDS: Expansive cement (EC)Field applicationsLaboratory testsNon-explosive rock breakagePolylactic acid (PLA)Soundless chemical demolition agentsMOTS-CLÉS: acide polylactique (PLA)agents de démolitionciment expansif (EC)applications sur le terrainessais de laboratoirerupture de roche non explosif DISCLOSURE STATEMENTNo potential conflict of interest was reported by the author(s).REVIEW STATEMENTThis article was reviewed and approved for publication by the Maintenance, Engineering and Reliability Society of the Canadian Institute of Mining, Metallurgy and Petroleum.AUTHORSHIP CONTRIBUTION STATEMENTTuo Chen: Conceptualization, methodology, formal analysis, investigation, data curation, writing – original draft. Yizhuo Li: Writing, visualization, testing. Kelly Habib: Data curation, writing, and project administration. Hani S. Mitri: Reviewing, editing, and funding acquisition.Additional informationFundingThis work was financially supported by a research grant from Natural Resources Canada, Clean Growth Program, Grant No. CGP-17-1003, and industry partner Newmont Corporation. The authors are grateful for their support.Notes on contributorsT. ChenTuo Chen holds both Master of Engineering (MEng) and Doctor of Philosophy (PhD) degrees from McGill University. His areas of expertise include the explosive-free rock fracturing method, numerical modeling of mining-induced seismicity, and the design of sill pillars and crown pillars in underground mines.Y. LiYizhuo Li is a PhD candidate in Mining Engineering at McGill University. She is conducting research in McGill’s Mine Design and Numerical Modelling Laboratory while also working as a teaching assistant in the department. Her current research focuses on stress measurement and stability assessment for underground mining.K.-M. HabibKelly Habib completed her PhD in Mining Engineering at McGill University in December 2022. She holds a BSc in Chemistry from University of Ottawa and an MSc in Mining Engineering from McGill University. Her graduate studies mainly revolved around the development of EC for rock breakage in underground mines.H. S. MitriHani S. Mitri is Professor of Mining Engineering at McGill University and founder of McGill’s Mine Design and Numerical Modelling Laboratory. His teaching, research, and consulting activities relate to mine design and rock mechanics with numerical modelling. He is a registered professional engineer in Quebec and a CIM Fellow.\",\"PeriodicalId\":197002,\"journal\":{\"name\":\"CIM Journal\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIM Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19236026.2023.2239106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIM Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19236026.2023.2239106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要膨胀水泥(EC)一般是一种灌入垂直孔内用于地表破岩的浆料。本文介绍了一种新型套管的开发,用于将EC应用范围从重力填充的垂直井扩展到水平、上倾斜和湿井。四个墨盒原型是用三维打印机用低成本和现成的塑料制成的。在无侧限岩板试验中对每个药筒的性能进行了研究。聚乳酸(PLA)药盒被发现优于热塑性聚氨酯、聚对苯二甲酸乙二醇酯和丙烯腈丁二烯苯乙烯药盒。通过部分防热,PLA药管加速了EC的水力反应,与垂直的重力填充EC相比,岩石破坏的开始时间缩短了30%。最后,以某地下矿山为例,采用聚乳酸药筒进行了EC破岩试验。这种新型装药不仅可以适应目前EC表面应用范围之外的各种应用,而且可以显著提高EC的岩石压裂效率。RÉSUMÉLe化学膨胀(EC)是一种化学膨胀,它是一种化学膨胀,是一种化学膨胀,是一种化学膨胀。这篇文章描述了在垂直、垂直、横向、倾斜、潮湿环境下的应用,描述了在垂直、重力、横向、倾斜和潮湿环境下的应用。四分之一的原型(四分之一的原型)的cartouches ont前程,前程,前程,前程,前程,前程,前程,前程。我的表演不像以前那样简单。我的表演不像以前那样简单。我的表演不像以前那样简单。聚乳酸(聚乳酸,聚乳酸,聚乳酸,聚乳酸,聚乳酸,聚乳酸,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚脲,聚乳酸,聚脲,聚乳酸,聚脲,聚乳酸,聚脲,聚乳酸,聚乳酸,聚脲,聚乳酸,聚乳酸。恩典盟监禁partiel de la chaleur拉漩涡装饰解放军accelere la反应hydraulique de l 'EC et raccourci了de la破坏de la罗氏de 30%票面融洽l 'EC verticale remplie票面的重心。Enfin, la rupture de la roche avec l 'EC a samuest dsamuest dsamuest dsamuest dsamuest dsamuest dsamuest dsamuest danci.912.com。这种新型的无沉降式波纹管可方便于各种不同的应用,例如表面的波纹管,表面的波纹管,表面波纹管的波纹管,表面波纹管的波纹管,表面波纹管的波纹管,表面波纹管的波纹管,表面波纹管的波纹管,表面波纹管的波纹管的波纹管,表面波纹管的波纹管的波纹管。关键词:膨胀水泥(EC)现场应用实验室测试非爆炸性破岩聚乳酸(PLA)无声化学爆破agentsMOTS-CLÉS:酸类聚乳酸(PLA)剂化学爆炸扩展(EC)应用于地形实验室破裂非爆炸性披露声明作者未报告潜在的利益冲突。本文经加拿大矿业、冶金和石油学会维修、工程和可靠性学会审查并批准发表。陈拓:概念、方法、形式分析、调查、数据整理、写作-原稿。李一卓:写作、可视化、测试。Kelly Habib:数据管理、写作和项目管理。哈尼·s·米特里:审查、编辑和资金获取。本研究由加拿大自然资源部清洁增长计划资助,资助号:CGP-17-1003和行业合作伙伴Newmont Corporation。作者非常感谢他们的支持。关于贡献者的说明。陈辰沱,麦吉尔大学工学硕士和哲学博士。他的专业领域包括无爆岩石压裂方法,采矿诱发地震活动的数值模拟,以及地下矿山基柱和顶柱的设计。李义卓,麦吉尔大学采矿工程博士研究生。她在麦吉尔大学的矿山设计和数值模拟实验室进行研究,同时也在该系担任助教。目前主要研究方向为地下采矿应力测量与稳定性评价。kelly Habib于2022年12月在麦吉尔大学(McGill University)完成了采矿工程博士学位。她拥有渥太华大学化学学士学位和麦吉尔大学采矿工程硕士学位。她的研究生研究主要围绕着EC在地下矿山岩石破坏中的发展。S. MitriHani S. Mitri是麦吉尔大学采矿工程教授,也是麦吉尔大学矿山设计和数值模拟实验室的创始人。他的教学、研究和咨询活动涉及矿山设计和岩石力学数值建模。他是魁北克省的注册专业工程师和CIM研究员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a novel cartridge for expansive cement application to hard rock breakage
ABSTRACTExpansive cement (EC) is generally a slurry that it is poured into vertical holes for surface rock breakage applications. This paper describes the development of a novel cartridge for extending EC applications from gravity-filled vertical holes to horizontal, uptilted, and wet boreholes. Four cartridge prototypes were made from low-cost and readily available plastics using three-dimensional printers. The performance of each cartridge was investigated in unconfined rock slab tests. The polylactic acid (PLA) cartridge was found to be superior to the thermoplastic polyurethane, polyethylene terephthalate glycol, and acrylonitrile butadiene styrene cartridges. Through partial heat containment, the PLA cartridge accelerated the EC hydraulic reaction and shortened the onset of rock destruction by 30% relative to vertical, gravity-filled EC. Finally, rock breakage with EC was demonstrated in an underground mine using PLA cartridges. This novel type of cartridge could not only suit various applications beyond the scope of the current EC surface applications but also significantly improve the rock fracturing efficiency of EC.RÉSUMÉLe ciment expansif (EC) est généralement une boue que l’on verse dans des trous verticaux pour briser la roche en surface. Cet article décrit le développement d’une nouvelle cartouche permettant d’étendre les applications du ciment expansif des trous verticaux remplis par gravité aux trous de forage horizontaux, inclinés et humides. Quatre prototypes de cartouches ont été fabriqués à l’aide d’imprimantes tridimensionnelles à partir de plastiques peu coûteux et facilement disponibles. Les performances de chaque cartouche ont été étudiées lors d’essais en dalles rocheuses non confinées.La cartouche en acide polylactique (PLA, de l’anglais polylactic acid) s’est avérée supérieure aux cartouches en polyuréthane thermoplastique, en polyéthyléne téréphtalate glycol et en acrylonitrile butadiéne styréne. Grâce au confinement partiel de la chaleur, la cartouche PLA a accéléré la réaction hydraulique de l’EC et a raccourci le début de la destruction de la roche de 30 % par rapport à l’EC verticale remplie par gravité. Enfin, la rupture de la roche avec l’EC a été démontrée dans une mine souterraine à l’aide de cartouches en PLA. Ce nouveau type de cartouche pourrait non seulement convenir à diverses applications dépassant le cadre des applications actuelles de l’EC en surface, mais aussi améliorer de maniére significative l’efficacité de la fracturation de la roche par l’EC.KEYWORDS: Expansive cement (EC)Field applicationsLaboratory testsNon-explosive rock breakagePolylactic acid (PLA)Soundless chemical demolition agentsMOTS-CLÉS: acide polylactique (PLA)agents de démolitionciment expansif (EC)applications sur le terrainessais de laboratoirerupture de roche non explosif DISCLOSURE STATEMENTNo potential conflict of interest was reported by the author(s).REVIEW STATEMENTThis article was reviewed and approved for publication by the Maintenance, Engineering and Reliability Society of the Canadian Institute of Mining, Metallurgy and Petroleum.AUTHORSHIP CONTRIBUTION STATEMENTTuo Chen: Conceptualization, methodology, formal analysis, investigation, data curation, writing – original draft. Yizhuo Li: Writing, visualization, testing. Kelly Habib: Data curation, writing, and project administration. Hani S. Mitri: Reviewing, editing, and funding acquisition.Additional informationFundingThis work was financially supported by a research grant from Natural Resources Canada, Clean Growth Program, Grant No. CGP-17-1003, and industry partner Newmont Corporation. The authors are grateful for their support.Notes on contributorsT. ChenTuo Chen holds both Master of Engineering (MEng) and Doctor of Philosophy (PhD) degrees from McGill University. His areas of expertise include the explosive-free rock fracturing method, numerical modeling of mining-induced seismicity, and the design of sill pillars and crown pillars in underground mines.Y. LiYizhuo Li is a PhD candidate in Mining Engineering at McGill University. She is conducting research in McGill’s Mine Design and Numerical Modelling Laboratory while also working as a teaching assistant in the department. Her current research focuses on stress measurement and stability assessment for underground mining.K.-M. HabibKelly Habib completed her PhD in Mining Engineering at McGill University in December 2022. She holds a BSc in Chemistry from University of Ottawa and an MSc in Mining Engineering from McGill University. Her graduate studies mainly revolved around the development of EC for rock breakage in underground mines.H. S. MitriHani S. Mitri is Professor of Mining Engineering at McGill University and founder of McGill’s Mine Design and Numerical Modelling Laboratory. His teaching, research, and consulting activities relate to mine design and rock mechanics with numerical modelling. He is a registered professional engineer in Quebec and a CIM Fellow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tourmaline breccia pipes of the Giant Copper porphyry system: Extending the Cascadia porphyry district into southern British Columbia, Canada Tourmaline breccia pipes of the Giant Copper porphyry system: Extending the Cascadia porphyry district into southern British Columbia, Canada Safety of rope-guided conveyance systems CanmetMINING diesel and BEV field test series: MacLean Engineering diesel and battery electric cassette truck CanmetMINING battery electric vehicle field test series: Relay utility vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1