Annely Brandt, Roman Petrovsky, Maria Kriebel, Jörg Großhans
{"title":"法尼基转移酶抑制剂在果蝇衰老模型中的应用","authors":"Annely Brandt, Roman Petrovsky, Maria Kriebel, Jörg Großhans","doi":"10.3390/jdb11040040","DOIUrl":null,"url":null,"abstract":"The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome (HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphology in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms. Here, we report an experimental system combining cell culture and Drosophila flies for testing the activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experimental example. Consistent with previous reports, we show that FTIs were able to ameliorate the nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for testing substances in the lifespan assay.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"47 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Farnesyl Transferase Inhibitors in an Ageing Model in Drosophila\",\"authors\":\"Annely Brandt, Roman Petrovsky, Maria Kriebel, Jörg Großhans\",\"doi\":\"10.3390/jdb11040040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome (HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphology in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms. Here, we report an experimental system combining cell culture and Drosophila flies for testing the activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experimental example. Consistent with previous reports, we show that FTIs were able to ameliorate the nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for testing substances in the lifespan assay.\",\"PeriodicalId\":15563,\"journal\":{\"name\":\"Journal of Developmental Biology\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jdb11040040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb11040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Use of Farnesyl Transferase Inhibitors in an Ageing Model in Drosophila
The presence of farnesylated proteins at the inner nuclear membrane (INM), such as the Lamins or Kugelkern in Drosophila, leads to specific changes in the nuclear morphology and accelerated ageing on the organismal level reminiscent of the Hutchinson–Gilford progeria syndrome (HGPS). Farnesyl transferase inhibitors (FTIs) can suppress the phenotypes of the nuclear morphology in cultured fibroblasts from HGPS patients and cultured cells overexpressing farnesylated INM proteins. Similarly, FTIs have been reported to suppress the shortened lifespan in model organisms. Here, we report an experimental system combining cell culture and Drosophila flies for testing the activity of substances on the HGPS-like nuclear morphology and lifespan, with FTIs as an experimental example. Consistent with previous reports, we show that FTIs were able to ameliorate the nuclear phenotypes induced by the farnesylated nuclear proteins Progerin, Kugelkern, or truncated Lamin B in cultured cells. The subsequent validation in Drosophila lifespan assays demonstrated the applicability of the experimental system: treating adult Drosophila with the FTI ABT-100 reversed the nuclear phenotypes and extended the lifespan of experimentally induced short-lived flies. Since kugelkern-expressing flies have a significantly shorter average lifespan, half the time is needed for testing substances in the lifespan assay.
期刊介绍:
The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.