{"title":"基于变压器的电子商务客户下一次购买日预测模型","authors":"Alexandru Grigoraș, Florin Leon","doi":"10.3390/computation11110210","DOIUrl":null,"url":null,"abstract":"The paper focuses on predicting the next purchase day (NPD) for customers in e-commerce, a task with applications in marketing, inventory management, and customer retention. A novel transformer-based model for NPD prediction is introduced and compared to traditional methods such as ARIMA, XGBoost, and LSTM. Transformers offer advantages in capturing long-term dependencies within time series data through self-attention mechanisms. This adaptability to various time series patterns, including trends, seasonality, and irregularities, makes them a promising choice for NPD prediction. The transformer model demonstrates improvements in prediction accuracy compared to the baselines. Additionally, a clustered transformer model is proposed, which further enhances accuracy, emphasizing the potential of this architecture for NPD prediction.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"58 12","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer-Based Model for Predicting Customers’ Next Purchase Day in e-Commerce\",\"authors\":\"Alexandru Grigoraș, Florin Leon\",\"doi\":\"10.3390/computation11110210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on predicting the next purchase day (NPD) for customers in e-commerce, a task with applications in marketing, inventory management, and customer retention. A novel transformer-based model for NPD prediction is introduced and compared to traditional methods such as ARIMA, XGBoost, and LSTM. Transformers offer advantages in capturing long-term dependencies within time series data through self-attention mechanisms. This adaptability to various time series patterns, including trends, seasonality, and irregularities, makes them a promising choice for NPD prediction. The transformer model demonstrates improvements in prediction accuracy compared to the baselines. Additionally, a clustered transformer model is proposed, which further enhances accuracy, emphasizing the potential of this architecture for NPD prediction.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"58 12\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11110210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Transformer-Based Model for Predicting Customers’ Next Purchase Day in e-Commerce
The paper focuses on predicting the next purchase day (NPD) for customers in e-commerce, a task with applications in marketing, inventory management, and customer retention. A novel transformer-based model for NPD prediction is introduced and compared to traditional methods such as ARIMA, XGBoost, and LSTM. Transformers offer advantages in capturing long-term dependencies within time series data through self-attention mechanisms. This adaptability to various time series patterns, including trends, seasonality, and irregularities, makes them a promising choice for NPD prediction. The transformer model demonstrates improvements in prediction accuracy compared to the baselines. Additionally, a clustered transformer model is proposed, which further enhances accuracy, emphasizing the potential of this architecture for NPD prediction.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.