{"title":"基于BP神经网络与SWMM模型耦合的城市内涝风险预测研究","authors":"Jinping Zhang, Xuechun Li, Haorui Zhang","doi":"10.2166/wcc.2023.076","DOIUrl":null,"url":null,"abstract":"Abstract Scientific and effective urban waterlogging risk prediction can help improve urban waterlogging disaster prevention capabilities. Combining the numerical simulation model with the data-driven model, the construction of the urban waterlogging risk predictive model can satisfy the prediction accuracy and improve the prediction timeliness. Thus, this paper established an urban waterlogging risk predictive model based on the coupling of the BP neural network and SWMM model, and set five input patterns, finally selected the accumulative precipitation process and precipitation characteristics as input to predict the regional waterlogging risks under different urban rainstorm scenarios. The results show that the overall performance of the pipe drainage system in the study area is lower, and it cannot resist the rainstorm with a higher return period. Moreover, the total waterlogging risk of the southern old city is higher than that of the northern new city in the study area. The calculation speed of the prediction model constructed in this paper is thousands of times higher than that of the numerical model, so the calculation speed is very fast, which meets the requirements of the forecast timeliness.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":"1 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on urban waterlogging risk prediction based on the coupling of the BP neural network and SWMM model\",\"authors\":\"Jinping Zhang, Xuechun Li, Haorui Zhang\",\"doi\":\"10.2166/wcc.2023.076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Scientific and effective urban waterlogging risk prediction can help improve urban waterlogging disaster prevention capabilities. Combining the numerical simulation model with the data-driven model, the construction of the urban waterlogging risk predictive model can satisfy the prediction accuracy and improve the prediction timeliness. Thus, this paper established an urban waterlogging risk predictive model based on the coupling of the BP neural network and SWMM model, and set five input patterns, finally selected the accumulative precipitation process and precipitation characteristics as input to predict the regional waterlogging risks under different urban rainstorm scenarios. The results show that the overall performance of the pipe drainage system in the study area is lower, and it cannot resist the rainstorm with a higher return period. Moreover, the total waterlogging risk of the southern old city is higher than that of the northern new city in the study area. The calculation speed of the prediction model constructed in this paper is thousands of times higher than that of the numerical model, so the calculation speed is very fast, which meets the requirements of the forecast timeliness.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.076\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.076","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Research on urban waterlogging risk prediction based on the coupling of the BP neural network and SWMM model
Abstract Scientific and effective urban waterlogging risk prediction can help improve urban waterlogging disaster prevention capabilities. Combining the numerical simulation model with the data-driven model, the construction of the urban waterlogging risk predictive model can satisfy the prediction accuracy and improve the prediction timeliness. Thus, this paper established an urban waterlogging risk predictive model based on the coupling of the BP neural network and SWMM model, and set five input patterns, finally selected the accumulative precipitation process and precipitation characteristics as input to predict the regional waterlogging risks under different urban rainstorm scenarios. The results show that the overall performance of the pipe drainage system in the study area is lower, and it cannot resist the rainstorm with a higher return period. Moreover, the total waterlogging risk of the southern old city is higher than that of the northern new city in the study area. The calculation speed of the prediction model constructed in this paper is thousands of times higher than that of the numerical model, so the calculation speed is very fast, which meets the requirements of the forecast timeliness.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.