{"title":"利用激光诱导击穿光谱对模拟燃料碎片进行二维元素映射","authors":"Munkhbat Batsaikhan, Katsuaki Akaoka, Morihisa Saeki, Takahiro Karino, Hironori Ohba, Ikuo Wakaida","doi":"10.1080/00223131.2023.2255186","DOIUrl":null,"url":null,"abstract":"ABSTRACTIn this experimental study, two-dimensional elemental mapping of simulated fuel debris was conducted by laser-induced breakdown spectroscopy (LIBS). Since the real fuel debris was unavailable as a sample, simulated fuel debris was prepared from predicted materials including compounds and metals. An Nd:YAG laser at the second harmonic was used to generate plasma on the sample surface, and the optical emission from plasma was detected using an echelle spectrometer in the visible wavelength range from 435 to 650 nm. Due to the size and complexity of the collected dataset, the conventional data analysis method was ineffective; consequently, there arose a need to design a new data analysis method for study purposes. Therefore, in the present study, a method that is based on label-free chemometric methods, such as Principal Component Analysis and Multivariate Curve Resolution-Alternative Least Square methods, were implemented to obtain the spatial and spectral information regarding each constituent within the simulated sample. The study results demonstrated that the integration of LIBS and chemometric methods is a highly effective tool to obtain qualitative information regarding samples (e.g. fuel debris) with little or no prior knowledge.KEYWORDS: Laser-induced breakdown spectroscopychemometricsFukushima Daiichi nuclear power stationnuclear fuel debris Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":16526,"journal":{"name":"Journal of Nuclear Science and Technology","volume":"45 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional elemental mapping of simulated fuel debris using laser-induced breakdown spectroscopy\",\"authors\":\"Munkhbat Batsaikhan, Katsuaki Akaoka, Morihisa Saeki, Takahiro Karino, Hironori Ohba, Ikuo Wakaida\",\"doi\":\"10.1080/00223131.2023.2255186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTIn this experimental study, two-dimensional elemental mapping of simulated fuel debris was conducted by laser-induced breakdown spectroscopy (LIBS). Since the real fuel debris was unavailable as a sample, simulated fuel debris was prepared from predicted materials including compounds and metals. An Nd:YAG laser at the second harmonic was used to generate plasma on the sample surface, and the optical emission from plasma was detected using an echelle spectrometer in the visible wavelength range from 435 to 650 nm. Due to the size and complexity of the collected dataset, the conventional data analysis method was ineffective; consequently, there arose a need to design a new data analysis method for study purposes. Therefore, in the present study, a method that is based on label-free chemometric methods, such as Principal Component Analysis and Multivariate Curve Resolution-Alternative Least Square methods, were implemented to obtain the spatial and spectral information regarding each constituent within the simulated sample. The study results demonstrated that the integration of LIBS and chemometric methods is a highly effective tool to obtain qualitative information regarding samples (e.g. fuel debris) with little or no prior knowledge.KEYWORDS: Laser-induced breakdown spectroscopychemometricsFukushima Daiichi nuclear power stationnuclear fuel debris Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":16526,\"journal\":{\"name\":\"Journal of Nuclear Science and Technology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00223131.2023.2255186\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00223131.2023.2255186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Two-dimensional elemental mapping of simulated fuel debris using laser-induced breakdown spectroscopy
ABSTRACTIn this experimental study, two-dimensional elemental mapping of simulated fuel debris was conducted by laser-induced breakdown spectroscopy (LIBS). Since the real fuel debris was unavailable as a sample, simulated fuel debris was prepared from predicted materials including compounds and metals. An Nd:YAG laser at the second harmonic was used to generate plasma on the sample surface, and the optical emission from plasma was detected using an echelle spectrometer in the visible wavelength range from 435 to 650 nm. Due to the size and complexity of the collected dataset, the conventional data analysis method was ineffective; consequently, there arose a need to design a new data analysis method for study purposes. Therefore, in the present study, a method that is based on label-free chemometric methods, such as Principal Component Analysis and Multivariate Curve Resolution-Alternative Least Square methods, were implemented to obtain the spatial and spectral information regarding each constituent within the simulated sample. The study results demonstrated that the integration of LIBS and chemometric methods is a highly effective tool to obtain qualitative information regarding samples (e.g. fuel debris) with little or no prior knowledge.KEYWORDS: Laser-induced breakdown spectroscopychemometricsFukushima Daiichi nuclear power stationnuclear fuel debris Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
The Journal of Nuclear Science and Technology (JNST) publishes internationally peer-reviewed papers that contribute to the exchange of research, ideas and developments in the field of nuclear science and technology, to contribute peaceful and sustainable development of the World.
JNST ’s broad scope covers a wide range of topics within its subject category, including but are not limited to:
General Issues related to Nuclear Power Utilization: Philosophy and Ethics, Justice and Policy, International Relation, Economical and Sociological Aspects, Environmental Aspects, Education, Documentation and Database, Nuclear Non-Proliferation, Safeguard
Radiation, Accelerator and Beam Technologies: Nuclear Physics, Nuclear Reaction for Engineering, Nuclear Data Measurement and Evaluation, Integral Verification/Validation and Benchmark on Nuclear Data, Radiation Behaviors and Shielding, Radiation Physics, Radiation Detection and Measurement, Accelerator and Beam Technology, Synchrotron Radiation, Medical Reactor and Accelerator, Neutron Source, Neutron Technology
Nuclear Reactor Physics: Reactor Physics Experiments, Reactor Neutronics Design and Evaluation, Reactor Analysis, Neutron Transport Calculation, Reactor Dynamics Experiment, Nuclear Criticality Safety, Fuel Burnup and Nuclear Transmutation,
Reactor Instrumentation and Control, Human-Machine System: Reactor Instrumentation and Control System, Human Factor, Control Room and Operator Interface Design, Remote Control, Robotics, Image Processing
Thermal Hydraulics: Thermal Hydraulic Experiment and Analysis, Thermal Hydraulic Design, Thermal Hydraulics of Single/Two/Multi Phase Flow, Interactive Phenomena with Fluid, Measurement Technology...etc.