{"title":"针对恶意用户检测的集成特征选择与对抗训练研究","authors":"Linjie Zhang, Xiaoyan Zhu, Jianfeng Ma","doi":"10.23919/jcc.ea.2021-0512.202302","DOIUrl":null,"url":null,"abstract":"The continuously booming of information technology has shed light on developing a variety of communication networks, multimedia, social networks and Internet of Things applications. However, users inevitably suffer from the intrusion of malicious users. Some studies focus on static characteristics of malicious users, which is easy to be bypassed by camouflaged malicious users. In this paper, we present a malicious user detection method based on ensemble feature selection and adversarial training. Firstly, the feature selection alleviates the dimension disaster problem and achieves more accurate classification performance. Secondly, we embed features into the multidimensional space and aggregate it into a feature map to encode the explicit content preference and implicit interaction preference. Thirdly, we use an effective ensemble learning which could avoid over-fitting and has good noise resistance. Finally, we propose a datadriven neural network detection model with the regularization technique adversarial training to deeply analyze the characteristics. It simplifies the parameters, obtaining more robust interaction features and pattern features. We demonstrate the effectiveness of our approach with numerical simulation results for malicious user detection, where the robustness issues are notable concerns.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"101 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of ensemble feature selection and adversarial training for malicious user detection\",\"authors\":\"Linjie Zhang, Xiaoyan Zhu, Jianfeng Ma\",\"doi\":\"10.23919/jcc.ea.2021-0512.202302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuously booming of information technology has shed light on developing a variety of communication networks, multimedia, social networks and Internet of Things applications. However, users inevitably suffer from the intrusion of malicious users. Some studies focus on static characteristics of malicious users, which is easy to be bypassed by camouflaged malicious users. In this paper, we present a malicious user detection method based on ensemble feature selection and adversarial training. Firstly, the feature selection alleviates the dimension disaster problem and achieves more accurate classification performance. Secondly, we embed features into the multidimensional space and aggregate it into a feature map to encode the explicit content preference and implicit interaction preference. Thirdly, we use an effective ensemble learning which could avoid over-fitting and has good noise resistance. Finally, we propose a datadriven neural network detection model with the regularization technique adversarial training to deeply analyze the characteristics. It simplifies the parameters, obtaining more robust interaction features and pattern features. We demonstrate the effectiveness of our approach with numerical simulation results for malicious user detection, where the robustness issues are notable concerns.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/jcc.ea.2021-0512.202302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.ea.2021-0512.202302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A study of ensemble feature selection and adversarial training for malicious user detection
The continuously booming of information technology has shed light on developing a variety of communication networks, multimedia, social networks and Internet of Things applications. However, users inevitably suffer from the intrusion of malicious users. Some studies focus on static characteristics of malicious users, which is easy to be bypassed by camouflaged malicious users. In this paper, we present a malicious user detection method based on ensemble feature selection and adversarial training. Firstly, the feature selection alleviates the dimension disaster problem and achieves more accurate classification performance. Secondly, we embed features into the multidimensional space and aggregate it into a feature map to encode the explicit content preference and implicit interaction preference. Thirdly, we use an effective ensemble learning which could avoid over-fitting and has good noise resistance. Finally, we propose a datadriven neural network detection model with the regularization technique adversarial training to deeply analyze the characteristics. It simplifies the parameters, obtaining more robust interaction features and pattern features. We demonstrate the effectiveness of our approach with numerical simulation results for malicious user detection, where the robustness issues are notable concerns.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.