保持元分析的活力和良好:在PsychOpen CAMA中实施和使用社区增强元分析的教程

IF 15.6 1区 心理学 Q1 PSYCHOLOGY Advances in Methods and Practices in Psychological Science Pub Date : 2023-10-01 DOI:10.1177/25152459231197611
Lisa Bucher, Tanja Burgard, Ulrich S. Tran, Gerhard M. Prinz, Michael Bosnjak, Martin Voracek
{"title":"保持元分析的活力和良好:在PsychOpen CAMA中实施和使用社区增强元分析的教程","authors":"Lisa Bucher, Tanja Burgard, Ulrich S. Tran, Gerhard M. Prinz, Michael Bosnjak, Martin Voracek","doi":"10.1177/25152459231197611","DOIUrl":null,"url":null,"abstract":"Newly developed, web-based, open-repository concepts, such as community-augmented meta-analysis (CAMA), provide open access to fulfill the needs for transparency and timeliness of synthesized evidence. The main idea of CAMA is to keep meta-analyses up-to-date by allowing the research community to include new evidence continuously. In 2021, the Leibniz Institute for Psychology released a platform, PsychOpen CAMA, which serves as a publication format for CAMAs in all fields of psychology. The present work serves as a tutorial on implementing and using a CAMA in PsychOpen CAMA from a data-provider perspective, using six large-scale meta-analytic data sets on the dark triad of personality as a working example. First, the processes of data contribution and implementation of either new or updated existing data sets are summarized. Furthermore, a step-by-step tutorial on using and interpreting CAMAs guides the reader through the web application. Finally, the tutorial outlines the major benefits and the remaining challenges of CAMAs in PsychOpen CAMA.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":"28 1","pages":"0"},"PeriodicalIF":15.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA\",\"authors\":\"Lisa Bucher, Tanja Burgard, Ulrich S. Tran, Gerhard M. Prinz, Michael Bosnjak, Martin Voracek\",\"doi\":\"10.1177/25152459231197611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Newly developed, web-based, open-repository concepts, such as community-augmented meta-analysis (CAMA), provide open access to fulfill the needs for transparency and timeliness of synthesized evidence. The main idea of CAMA is to keep meta-analyses up-to-date by allowing the research community to include new evidence continuously. In 2021, the Leibniz Institute for Psychology released a platform, PsychOpen CAMA, which serves as a publication format for CAMAs in all fields of psychology. The present work serves as a tutorial on implementing and using a CAMA in PsychOpen CAMA from a data-provider perspective, using six large-scale meta-analytic data sets on the dark triad of personality as a working example. First, the processes of data contribution and implementation of either new or updated existing data sets are summarized. Furthermore, a step-by-step tutorial on using and interpreting CAMAs guides the reader through the web application. Finally, the tutorial outlines the major benefits and the remaining challenges of CAMAs in PsychOpen CAMA.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25152459231197611\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25152459231197611","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

新开发的基于网络的开放存储库概念,如社区增强元分析(CAMA),提供了开放获取,以满足对合成证据的透明度和及时性的需求。CAMA的主要思想是通过允许研究界不断纳入新的证据来保持元分析的最新状态。2021年,莱布尼茨心理学研究所(Leibniz Institute for Psychology)发布了一个名为PsychOpen CAMA的平台,作为心理学所有领域的CAMA的出版格式。本研究从数据提供者的角度,以人格黑暗三联征的六个大规模元分析数据集为例,作为在PsychOpen CAMA中实施和使用CAMA的教程。首先,总结了新数据集或更新现有数据集的数据贡献和实现过程。此外,关于使用和解释cama的逐步教程指导读者通过web应用程序。最后,本教程概述了在PsychOpen CAMA中CAMA的主要优点和剩余的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA
Newly developed, web-based, open-repository concepts, such as community-augmented meta-analysis (CAMA), provide open access to fulfill the needs for transparency and timeliness of synthesized evidence. The main idea of CAMA is to keep meta-analyses up-to-date by allowing the research community to include new evidence continuously. In 2021, the Leibniz Institute for Psychology released a platform, PsychOpen CAMA, which serves as a publication format for CAMAs in all fields of psychology. The present work serves as a tutorial on implementing and using a CAMA in PsychOpen CAMA from a data-provider perspective, using six large-scale meta-analytic data sets on the dark triad of personality as a working example. First, the processes of data contribution and implementation of either new or updated existing data sets are summarized. Furthermore, a step-by-step tutorial on using and interpreting CAMAs guides the reader through the web application. Finally, the tutorial outlines the major benefits and the remaining challenges of CAMAs in PsychOpen CAMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.20
自引率
0.70%
发文量
16
期刊介绍: In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions. The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science. The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies. Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.
期刊最新文献
Bayesian Analysis of Cross-Sectional Networks: A Tutorial in R and JASP Conducting Research With People in Lower-Socioeconomic-Status Contexts Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA A Practical Guide to Conversation Research: How to Study What People Say to Each Other Impossible Hypotheses and Effect-Size Limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1