Yingchun Lu, Yun Yang, Rong Hu, Huaguo Liang, Maoxiang Yi, Huang Zhengfeng, Yuanming Ma, Tian Chen, Liang Yao
{"title":"基于多位双环振荡器的高效TRNG设计","authors":"Yingchun Lu, Yun Yang, Rong Hu, Huaguo Liang, Maoxiang Yi, Huang Zhengfeng, Yuanming Ma, Tian Chen, Liang Yao","doi":"10.1145/3624991","DOIUrl":null,"url":null,"abstract":"Unpredictable true random numbers are required in security technology fields such as information encryption, key generation, mask generation for anti-side-channel analysis, algorithm initialization, etc. At present, the true random number generator (TRNG) is not enough to provide fast random bits by low-speed bits generation. Therefore, it is necessary to design a faster TRNG. This work presents an ultra-compact TRNG with high throughput based on a novel extendable dual-ring oscillator (DRO). Owing to multiple bits output per cycle in DRO can be used to obtain the original random sequence, the proposed DRO achieves a maximum resource utilization to build a more efficient TRNG, compared with the conventional TRNG system based on ring oscillator (RO), which only has a single output and needs to build multiple groups of ring oscillators. TRNG based on the 2-bit DRO and its 8-bit derivative structure has been verified on Xilinx Artix-7 and Kintex-7 FPGA under the automatic layout and routing and has achieved a throughput of 550Mbps and 1100Mbps respectively. Moreover, in terms of throughput performance over operating frequency, hardware consumption, and entropy, the proposed scheme has obvious advantages. Finally, the generated sequences show good randomness in the test of NIST SP800-22 and Dieharder test suite and pass the entropy estimation test kit NIST SP800-90B and AIS-31.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"46 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency TRNG Design based on Multi-bit Dual-ring Oscillator\",\"authors\":\"Yingchun Lu, Yun Yang, Rong Hu, Huaguo Liang, Maoxiang Yi, Huang Zhengfeng, Yuanming Ma, Tian Chen, Liang Yao\",\"doi\":\"10.1145/3624991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unpredictable true random numbers are required in security technology fields such as information encryption, key generation, mask generation for anti-side-channel analysis, algorithm initialization, etc. At present, the true random number generator (TRNG) is not enough to provide fast random bits by low-speed bits generation. Therefore, it is necessary to design a faster TRNG. This work presents an ultra-compact TRNG with high throughput based on a novel extendable dual-ring oscillator (DRO). Owing to multiple bits output per cycle in DRO can be used to obtain the original random sequence, the proposed DRO achieves a maximum resource utilization to build a more efficient TRNG, compared with the conventional TRNG system based on ring oscillator (RO), which only has a single output and needs to build multiple groups of ring oscillators. TRNG based on the 2-bit DRO and its 8-bit derivative structure has been verified on Xilinx Artix-7 and Kintex-7 FPGA under the automatic layout and routing and has achieved a throughput of 550Mbps and 1100Mbps respectively. Moreover, in terms of throughput performance over operating frequency, hardware consumption, and entropy, the proposed scheme has obvious advantages. Finally, the generated sequences show good randomness in the test of NIST SP800-22 and Dieharder test suite and pass the entropy estimation test kit NIST SP800-90B and AIS-31.\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3624991\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3624991","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
High-Efficiency TRNG Design based on Multi-bit Dual-ring Oscillator
Unpredictable true random numbers are required in security technology fields such as information encryption, key generation, mask generation for anti-side-channel analysis, algorithm initialization, etc. At present, the true random number generator (TRNG) is not enough to provide fast random bits by low-speed bits generation. Therefore, it is necessary to design a faster TRNG. This work presents an ultra-compact TRNG with high throughput based on a novel extendable dual-ring oscillator (DRO). Owing to multiple bits output per cycle in DRO can be used to obtain the original random sequence, the proposed DRO achieves a maximum resource utilization to build a more efficient TRNG, compared with the conventional TRNG system based on ring oscillator (RO), which only has a single output and needs to build multiple groups of ring oscillators. TRNG based on the 2-bit DRO and its 8-bit derivative structure has been verified on Xilinx Artix-7 and Kintex-7 FPGA under the automatic layout and routing and has achieved a throughput of 550Mbps and 1100Mbps respectively. Moreover, in terms of throughput performance over operating frequency, hardware consumption, and entropy, the proposed scheme has obvious advantages. Finally, the generated sequences show good randomness in the test of NIST SP800-22 and Dieharder test suite and pass the entropy estimation test kit NIST SP800-90B and AIS-31.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.