作为潜在抗菌剂的新型萘并[2,1-b]呋喃嘧啶的设计、合成、光谱分析、药物相似性预测和分子对接研究

IF 2.4 3区 化学 Q2 CHEMISTRY, ORGANIC Polycyclic Aromatic Compounds Pub Date : 2024-10-20 DOI:10.1080/10406638.2023.2272012
{"title":"作为潜在抗菌剂的新型萘并[2,1-b]呋喃嘧啶的设计、合成、光谱分析、药物相似性预测和分子对接研究","authors":"","doi":"10.1080/10406638.2023.2272012","DOIUrl":null,"url":null,"abstract":"<div><div>In view of the extremely important biological and medicinal properties of napthofurans, the synthesis of these heterocycles has fascinated the interest of medicinal and organic chemists. Keeping this in mind, we herein report the synthesis and antimicrobial evaluation of 4-<em>N</em>-aryl-naphtho[2,1-<em>b</em>]furo[3,2-<em>d</em>] pyrimidines <strong>5 (a–l)</strong>. Structures of these synthesized compounds were confirmed by spectral analysis like IR, NMR, and Mass spectrometry. The <em>in vitro</em> antimicrobial activities were reported for all the compounds <strong>5 (a–l)</strong>. The compounds <strong>5e</strong> and <strong>5f</strong> exhibited excellent antibacterial, antifungal, and antidermatophytic activities against tested pathogens at MIC 3.125, and 3.125 µg/mL, respectively. Furthermore, molecular docking studies of these compounds against <em>S. aureus</em> tyrosyl-tRNA synthetase (<strong>PDB ID: 1JIJ</strong>), <em>S. aureus Gyrase</em> (<strong>PDB ID: 2XCT</strong>), and SARS-CoV-2 Omicron (<strong>PDB ID: 7TOB</strong>), revealed the potential binding mode of the ligands to the site of the appropriate targets. Finally, drug-likeness and structure-activity relationship studies were also disclosed.</div></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":"44 9","pages":"Pages 6042-6063"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, Synthesis, Spectral Analysis, Drug Likeness Prediction, and Molecular Docking Investigations of New Naphtho[2,1-b]Furan Encompassing Pyrimidines as Potential Antimicrobial Agents\",\"authors\":\"\",\"doi\":\"10.1080/10406638.2023.2272012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In view of the extremely important biological and medicinal properties of napthofurans, the synthesis of these heterocycles has fascinated the interest of medicinal and organic chemists. Keeping this in mind, we herein report the synthesis and antimicrobial evaluation of 4-<em>N</em>-aryl-naphtho[2,1-<em>b</em>]furo[3,2-<em>d</em>] pyrimidines <strong>5 (a–l)</strong>. Structures of these synthesized compounds were confirmed by spectral analysis like IR, NMR, and Mass spectrometry. The <em>in vitro</em> antimicrobial activities were reported for all the compounds <strong>5 (a–l)</strong>. The compounds <strong>5e</strong> and <strong>5f</strong> exhibited excellent antibacterial, antifungal, and antidermatophytic activities against tested pathogens at MIC 3.125, and 3.125 µg/mL, respectively. Furthermore, molecular docking studies of these compounds against <em>S. aureus</em> tyrosyl-tRNA synthetase (<strong>PDB ID: 1JIJ</strong>), <em>S. aureus Gyrase</em> (<strong>PDB ID: 2XCT</strong>), and SARS-CoV-2 Omicron (<strong>PDB ID: 7TOB</strong>), revealed the potential binding mode of the ligands to the site of the appropriate targets. Finally, drug-likeness and structure-activity relationship studies were also disclosed.</div></div>\",\"PeriodicalId\":20303,\"journal\":{\"name\":\"Polycyclic Aromatic Compounds\",\"volume\":\"44 9\",\"pages\":\"Pages 6042-6063\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polycyclic Aromatic Compounds\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1040663823020997\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823020997","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

鉴于萘呋喃具有极其重要的生物和药用特性,这些杂环的合成引起了医药和有机化学家的兴趣。有鉴于此,我们在此报告 4-N-芳基萘并[2,1-b]呋喃并[3,2-d]嘧啶 5(a-l)的合成和抗菌评价。通过红外光谱、核磁共振和质谱等光谱分析确认了这些合成化合物的结构。报告了所有化合物 5(a-l)的体外抗菌活性。化合物 5e 和 5f 在 MIC 值分别为 3.125 微克/毫升和 3.125 微克/毫升的情况下,对测试病原体表现出卓越的抗菌、抗真菌和抗皮肤癣菌活性。此外,这些化合物针对金黄色葡萄球菌酪氨酰-tRNA 合成酶(PDB ID:1JIJ)、金黄色葡萄球菌回旋酶(PDB ID:2XCT)和 SARS-CoV-2 Omicron(PDB ID:7TOB)的分子对接研究揭示了配体与相应靶点的潜在结合模式。最后,还披露了药物相似性和结构-活性关系研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design, Synthesis, Spectral Analysis, Drug Likeness Prediction, and Molecular Docking Investigations of New Naphtho[2,1-b]Furan Encompassing Pyrimidines as Potential Antimicrobial Agents
In view of the extremely important biological and medicinal properties of napthofurans, the synthesis of these heterocycles has fascinated the interest of medicinal and organic chemists. Keeping this in mind, we herein report the synthesis and antimicrobial evaluation of 4-N-aryl-naphtho[2,1-b]furo[3,2-d] pyrimidines 5 (a–l). Structures of these synthesized compounds were confirmed by spectral analysis like IR, NMR, and Mass spectrometry. The in vitro antimicrobial activities were reported for all the compounds 5 (a–l). The compounds 5e and 5f exhibited excellent antibacterial, antifungal, and antidermatophytic activities against tested pathogens at MIC 3.125, and 3.125 µg/mL, respectively. Furthermore, molecular docking studies of these compounds against S. aureus tyrosyl-tRNA synthetase (PDB ID: 1JIJ), S. aureus Gyrase (PDB ID: 2XCT), and SARS-CoV-2 Omicron (PDB ID: 7TOB), revealed the potential binding mode of the ligands to the site of the appropriate targets. Finally, drug-likeness and structure-activity relationship studies were also disclosed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polycyclic Aromatic Compounds
Polycyclic Aromatic Compounds 化学-有机化学
CiteScore
3.70
自引率
20.80%
发文量
412
审稿时长
3 months
期刊介绍: The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.
期刊最新文献
Experimental and Computational Study on the Spectroscopic Approach, Hyperpolarizabilities, NBO Analysis, ADMET Studies, and In-Silico Ligand-Protein Docking of 2,4,6-Trifluoro-5-Chloro Pyrimidine Synthesis, Anti-Proliferative Activity, DFT and Docking Studies of Some Novel Chloroquinoline-Based Heterocycles Computational and Experimental Investigation of Antibacterial Properties of Some Fluorinated Thioureas On the Molecular Structure of Remdesivir Compound Applied for the Treatment of Corona Virus Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Seafood from Orashi River in Omoku, Rivers State of Nigeria and Human Health Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1