{"title":"通过同位素标记研究(Al-) MCM-41催化葡萄糖和聚丙烯共热解产物中氢的来源","authors":"Junjie Xue, Jiankun Zhuo, Yifan Wu, Mingnuo Jin, Mufei Sun, Qiang Yao","doi":"10.1093/ce/zkac059","DOIUrl":null,"url":null,"abstract":"Abstract Catalytic co-pyrolysis of biomass and plastic is an effective method to improve bio-oil produced by biomass pyrolysis. To further exploit the synergistic mechanism between biomass and plastic, co-pyrolysis of polypropylene (PP) and deuterated glucose (G) (1:1 wt%) over mesoporous catalysts MCM-41 (M) and Al-MCM-41(Al) was studied using a thermal gravimetric analyser (TGA) and pyrolysis–gas chromatography–mass spectrometry. The findings show that M and Al overlap the decomposition of PP and G, making synergy possible. With catalysts M and Al, the yield of olefins increases sharply to 36.75% and 13.66% more than the calculated value. Additionally, hydrogen transfers from G to 4C–13C olefins and aromatic products are influenced by the catalysts. Without a catalyst, there is no deuterium in all the co-pyrolytic products. However, catalysts M and Al can help transfer one to four deuterium atoms from G to the products. M and Al provide the pool for the intermediates of PP and G to form synergetic products. Additionally, Al helps break the carbon chain and transfer more deuterium into the products by reducing carbon atoms.","PeriodicalId":36703,"journal":{"name":"Clean Energy","volume":"197 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin of hydrogen in aromatic and olefin products derived from (Al-) MCM-41 catalysed co-pyrolysis of glucose and polypropylene via isotopic labelling\",\"authors\":\"Junjie Xue, Jiankun Zhuo, Yifan Wu, Mingnuo Jin, Mufei Sun, Qiang Yao\",\"doi\":\"10.1093/ce/zkac059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Catalytic co-pyrolysis of biomass and plastic is an effective method to improve bio-oil produced by biomass pyrolysis. To further exploit the synergistic mechanism between biomass and plastic, co-pyrolysis of polypropylene (PP) and deuterated glucose (G) (1:1 wt%) over mesoporous catalysts MCM-41 (M) and Al-MCM-41(Al) was studied using a thermal gravimetric analyser (TGA) and pyrolysis–gas chromatography–mass spectrometry. The findings show that M and Al overlap the decomposition of PP and G, making synergy possible. With catalysts M and Al, the yield of olefins increases sharply to 36.75% and 13.66% more than the calculated value. Additionally, hydrogen transfers from G to 4C–13C olefins and aromatic products are influenced by the catalysts. Without a catalyst, there is no deuterium in all the co-pyrolytic products. However, catalysts M and Al can help transfer one to four deuterium atoms from G to the products. M and Al provide the pool for the intermediates of PP and G to form synergetic products. Additionally, Al helps break the carbon chain and transfer more deuterium into the products by reducing carbon atoms.\",\"PeriodicalId\":36703,\"journal\":{\"name\":\"Clean Energy\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ce/zkac059\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ce/zkac059","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Origin of hydrogen in aromatic and olefin products derived from (Al-) MCM-41 catalysed co-pyrolysis of glucose and polypropylene via isotopic labelling
Abstract Catalytic co-pyrolysis of biomass and plastic is an effective method to improve bio-oil produced by biomass pyrolysis. To further exploit the synergistic mechanism between biomass and plastic, co-pyrolysis of polypropylene (PP) and deuterated glucose (G) (1:1 wt%) over mesoporous catalysts MCM-41 (M) and Al-MCM-41(Al) was studied using a thermal gravimetric analyser (TGA) and pyrolysis–gas chromatography–mass spectrometry. The findings show that M and Al overlap the decomposition of PP and G, making synergy possible. With catalysts M and Al, the yield of olefins increases sharply to 36.75% and 13.66% more than the calculated value. Additionally, hydrogen transfers from G to 4C–13C olefins and aromatic products are influenced by the catalysts. Without a catalyst, there is no deuterium in all the co-pyrolytic products. However, catalysts M and Al can help transfer one to four deuterium atoms from G to the products. M and Al provide the pool for the intermediates of PP and G to form synergetic products. Additionally, Al helps break the carbon chain and transfer more deuterium into the products by reducing carbon atoms.