{"title":"基于深度学习的电机性能预测","authors":"Masatsugu Oyamada, Sadaaki Kunimatsu, Ikuro Mizumoto","doi":"10.1541/ieejjia.22005304","DOIUrl":null,"url":null,"abstract":"When designing electric motors, many types of performances (electrical and mechanical characteristics) must be predicted with good accuracy. In general, these performances are determined based on complex theoretical calculations, but theoretical calculations include various assumptions. Therefore, it is difficult to eliminate prediction errors when predicting performance, and it is necessary to improve accuracy by referring actual test data. Recently, with the digitalization of the manufacturing process, a large amount of actual data has been converted into a database, and it is expected to be put to effective use. Here, a neural network that predicts various performances of electric motors using a large amount of actual data as a training dataset, is constructed to achieve uniform and high-precision performance prediction via deep learning. Its practical use for actual design work is verified in this study.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"224 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Prediction of Electric Motors via Deep Learning\",\"authors\":\"Masatsugu Oyamada, Sadaaki Kunimatsu, Ikuro Mizumoto\",\"doi\":\"10.1541/ieejjia.22005304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When designing electric motors, many types of performances (electrical and mechanical characteristics) must be predicted with good accuracy. In general, these performances are determined based on complex theoretical calculations, but theoretical calculations include various assumptions. Therefore, it is difficult to eliminate prediction errors when predicting performance, and it is necessary to improve accuracy by referring actual test data. Recently, with the digitalization of the manufacturing process, a large amount of actual data has been converted into a database, and it is expected to be put to effective use. Here, a neural network that predicts various performances of electric motors using a large amount of actual data as a training dataset, is constructed to achieve uniform and high-precision performance prediction via deep learning. Its practical use for actual design work is verified in this study.\",\"PeriodicalId\":45552,\"journal\":{\"name\":\"IEEJ Journal of Industry Applications\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1541/ieejjia.22005304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22005304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Prediction of Electric Motors via Deep Learning
When designing electric motors, many types of performances (electrical and mechanical characteristics) must be predicted with good accuracy. In general, these performances are determined based on complex theoretical calculations, but theoretical calculations include various assumptions. Therefore, it is difficult to eliminate prediction errors when predicting performance, and it is necessary to improve accuracy by referring actual test data. Recently, with the digitalization of the manufacturing process, a large amount of actual data has been converted into a database, and it is expected to be put to effective use. Here, a neural network that predicts various performances of electric motors using a large amount of actual data as a training dataset, is constructed to achieve uniform and high-precision performance prediction via deep learning. Its practical use for actual design work is verified in this study.
期刊介绍:
IEEJ Journal of Industry Applications: Power Electronics - AC/AC Conversion and DC/DC Conversion, - Power Semiconductor Devices and their Application, - Inverters and Rectifiers, - Power Supply System and its Application, - Power Electronics Modeling, Simulation, Design and Control, - Renewable Electric Energy Conversion Industrial System - Mechatronics and Robotics, - Industrial Instrumentation and Control, - Sensing, Actuation, Motion Control and Haptics, - Factory Automation and Production Facility Control, - Automobile Technology and ITS Technology, - Information Oriented Industrial System Electrical Machinery and Apparatus - Electric Machines Design, Modeling and Control, - Rotating Motor Drives and Linear Motor Drives, - Electric Vehicles and Hybrid Electric Vehicles, - Electric Railway and Traction Control, - Magnetic Levitation and Magnetic Bearing, - Static Apparatus and Superconductive Application Publishing Ethics of IEEJ Journal of Industry Applications: Code of Ethics on IEEJ IEEJ Journal of Industry Applications is a peer-reviewed journal of IEEJ (the Institute of Electrical Engineers of Japan). The publication of IEEJ Journal of Industry Applications is an essential building article in the development of a coherent and respected network of knowledge. It is a direct reflection of the quality of the work of the authors and the institutions that support them. IEEJ Journal of Industry Applications has "Peer-reviewed articles support." It is therefore important to agree upon standards of expected ethical behavior for all parties involved in the act of publishing: the author, the journal editor, the peer reviewer and IEEJ (the Institute of Electrical Engineers of Japan).