非高斯COMFORT模型的密度和风险预测

IF 2 0 ECONOMICS Annals of Financial Economics Pub Date : 2023-02-09 DOI:10.1142/s2010495222500336
Marc S. Paolella, Paweł Polak
{"title":"非高斯COMFORT模型的密度和风险预测","authors":"Marc S. Paolella, Paweł Polak","doi":"10.1142/s2010495222500336","DOIUrl":null,"url":null,"abstract":"The CCC-GARCH model, and its dynamic correlation extensions, form the most important model class for multivariate asset returns. For multivariate density and portfolio risk forecasting, a drawback of these models is the underlying assumption of Gaussianity. This paper considers the so-called COMFORT model class, which is the CCC-GARCH model but endowed with multivariate generalized hyperbolic innovations. The novelty of the model is that parameter estimation is conducted by joint maximum likelihood, of all model parameters, using an EM algorithm, and so is feasible for hundreds of assets. This paper demonstrates that (i) the new model is blatantly superior to its Gaussian counterpart in terms of forecasting ability, and (ii) also outperforms ad-hoc three-step procedures common in the literature to augment the CCC and DCC models with a fat-tailed distribution. An extensive empirical study confirms the COMFORT model’s superiority in terms of multivariate density and Value-at-Risk forecasting.","PeriodicalId":43570,"journal":{"name":"Annals of Financial Economics","volume":"76 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density and Risk Prediction with Non-Gaussian COMFORT Models\",\"authors\":\"Marc S. Paolella, Paweł Polak\",\"doi\":\"10.1142/s2010495222500336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CCC-GARCH model, and its dynamic correlation extensions, form the most important model class for multivariate asset returns. For multivariate density and portfolio risk forecasting, a drawback of these models is the underlying assumption of Gaussianity. This paper considers the so-called COMFORT model class, which is the CCC-GARCH model but endowed with multivariate generalized hyperbolic innovations. The novelty of the model is that parameter estimation is conducted by joint maximum likelihood, of all model parameters, using an EM algorithm, and so is feasible for hundreds of assets. This paper demonstrates that (i) the new model is blatantly superior to its Gaussian counterpart in terms of forecasting ability, and (ii) also outperforms ad-hoc three-step procedures common in the literature to augment the CCC and DCC models with a fat-tailed distribution. An extensive empirical study confirms the COMFORT model’s superiority in terms of multivariate density and Value-at-Risk forecasting.\",\"PeriodicalId\":43570,\"journal\":{\"name\":\"Annals of Financial Economics\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Financial Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010495222500336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Financial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010495222500336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

CCC-GARCH模型及其动态相关扩展构成了最重要的多元资产收益模型类别。对于多元密度和投资组合风险预测,这些模型的一个缺点是潜在的高斯性假设。本文考虑所谓的COMFORT模型类,它是CCC-GARCH模型,但被赋予了多元广义双曲创新。该模型的新颖之处在于使用EM算法对所有模型参数进行联合极大似然估计,因此对数百种资产都是可行的。本文证明(i)新模型在预测能力方面明显优于高斯模型,并且(ii)也优于文献中常见的专门三步程序,以胖尾分布增加CCC和DCC模型。广泛的实证研究证实了COMFORT模型在多元密度和风险价值预测方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density and Risk Prediction with Non-Gaussian COMFORT Models
The CCC-GARCH model, and its dynamic correlation extensions, form the most important model class for multivariate asset returns. For multivariate density and portfolio risk forecasting, a drawback of these models is the underlying assumption of Gaussianity. This paper considers the so-called COMFORT model class, which is the CCC-GARCH model but endowed with multivariate generalized hyperbolic innovations. The novelty of the model is that parameter estimation is conducted by joint maximum likelihood, of all model parameters, using an EM algorithm, and so is feasible for hundreds of assets. This paper demonstrates that (i) the new model is blatantly superior to its Gaussian counterpart in terms of forecasting ability, and (ii) also outperforms ad-hoc three-step procedures common in the literature to augment the CCC and DCC models with a fat-tailed distribution. An extensive empirical study confirms the COMFORT model’s superiority in terms of multivariate density and Value-at-Risk forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
55.00%
发文量
30
期刊最新文献
How Do Remittance Inflows Cause the Dutch Disease in the Financial Sector? The Role of Financial Risk and Human Capital Factors Affecting the Crude Oil Prices Volatility: A Case Study of the USA, China, Japan, Germany and India The Emerging Stock Markets and Their Asymmetric Response to Infectious Disease Equity Market Volatility (ID-EMV) Index Greenhouse Gas Emissions and the Rising Effects of Renewable Energy Consumption and Climate Risk Development Finance: Evidence from BRICS Countries Potential Welfare Gains from Optimal Macro Hedging for Oil Exporters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1