具有相关边缘过程的网络

Maria Süveges, Sofia Charlotta Olhede
{"title":"具有相关边缘过程的网络","authors":"Maria Süveges, Sofia Charlotta Olhede","doi":"10.1093/jrsssa/qnad028","DOIUrl":null,"url":null,"abstract":"Abstract This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependence and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our proposed fitting method by analysing a hospital contact network, and this shows the challenge in modelling and inferring correlation between a large number of variables.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Networks with correlated edge processes\",\"authors\":\"Maria Süveges, Sofia Charlotta Olhede\",\"doi\":\"10.1093/jrsssa/qnad028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependence and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our proposed fitting method by analysing a hospital contact network, and this shows the challenge in modelling and inferring correlation between a large number of variables.\",\"PeriodicalId\":49985,\"journal\":{\"name\":\"Journal of the Royal Statistical Society\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnad028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了由医院交互数据集驱动的非平稳时间图过程的建模方法。这对应于对边缘变量的观察建模,表明在相互作用中表现出依赖性和演化的节点对之间的相互作用。因此,本文将(整数)时间序列模型与灵活的静态网络模型混合,生成时序图数据模型,并对时变交互数据进行统计拟合。我们通过分析医院联系网络来说明我们提出的拟合方法的力量,这表明在建模和推断大量变量之间的相关性方面存在挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Networks with correlated edge processes
Abstract This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependence and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our proposed fitting method by analysing a hospital contact network, and this shows the challenge in modelling and inferring correlation between a large number of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Bayesian approach to estimate annual bilateral migration flows for South America using census data Exploring Modeling with Data and Differential Equations Using R Calyampudi Radhakrishna (CR) Rao 1920–2023 Representative pure risk estimation by using data from epidemiologic studies, surveys, and registries: estimating risks for minority subgroups Where the bee sucks: a dynamic Bayesian network approach to decision support for pollinator abundance strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1