Saida Kaykhaii, Inga Herrmann, Annelie Hedström, Kerstin Nordqvist, Maria Viklander
{"title":"雨水处理采用超滤膜和脉冲流体流动","authors":"Saida Kaykhaii, Inga Herrmann, Annelie Hedström, Kerstin Nordqvist, Maria Viklander","doi":"10.1080/1573062x.2023.2183136","DOIUrl":null,"url":null,"abstract":"A polymeric ultrafiltration (UF) membrane was used for stormwater treatment, with the focus on evaluating the increase in the membrane process productivity by adding pulsatile fluid flow to UF membrane treatment. Sedimentation and sieving were used as pre-treatment. The result showed that increasing the pulse frequency from 0 to 4 Hz increased productivity from −6.6 to 82 LMH. UF membrane removed suspended solids, oil and turbidity below detection limit. The UF membrane also separated total coliforms, E. coli and P. aeruginosa below detection limit. Total organic carbon (TOC) was reduced by between 81%, in average. In addition, the UF membrane was able to reduce BOD7 and COD to below 7 mg/L in the permeate. According to the US EPA, WHO, and national regulations in Canada, Japan, and South Korea, treated stormwater can be used for flushing toilets and streets irrigation and agricultural use.","PeriodicalId":49392,"journal":{"name":"Urban Water Journal","volume":"74 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stormwater treatment using an ultrafiltration membrane and pulsatile fluid flow\",\"authors\":\"Saida Kaykhaii, Inga Herrmann, Annelie Hedström, Kerstin Nordqvist, Maria Viklander\",\"doi\":\"10.1080/1573062x.2023.2183136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A polymeric ultrafiltration (UF) membrane was used for stormwater treatment, with the focus on evaluating the increase in the membrane process productivity by adding pulsatile fluid flow to UF membrane treatment. Sedimentation and sieving were used as pre-treatment. The result showed that increasing the pulse frequency from 0 to 4 Hz increased productivity from −6.6 to 82 LMH. UF membrane removed suspended solids, oil and turbidity below detection limit. The UF membrane also separated total coliforms, E. coli and P. aeruginosa below detection limit. Total organic carbon (TOC) was reduced by between 81%, in average. In addition, the UF membrane was able to reduce BOD7 and COD to below 7 mg/L in the permeate. According to the US EPA, WHO, and national regulations in Canada, Japan, and South Korea, treated stormwater can be used for flushing toilets and streets irrigation and agricultural use.\",\"PeriodicalId\":49392,\"journal\":{\"name\":\"Urban Water Journal\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1573062x.2023.2183136\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1573062x.2023.2183136","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Stormwater treatment using an ultrafiltration membrane and pulsatile fluid flow
A polymeric ultrafiltration (UF) membrane was used for stormwater treatment, with the focus on evaluating the increase in the membrane process productivity by adding pulsatile fluid flow to UF membrane treatment. Sedimentation and sieving were used as pre-treatment. The result showed that increasing the pulse frequency from 0 to 4 Hz increased productivity from −6.6 to 82 LMH. UF membrane removed suspended solids, oil and turbidity below detection limit. The UF membrane also separated total coliforms, E. coli and P. aeruginosa below detection limit. Total organic carbon (TOC) was reduced by between 81%, in average. In addition, the UF membrane was able to reduce BOD7 and COD to below 7 mg/L in the permeate. According to the US EPA, WHO, and national regulations in Canada, Japan, and South Korea, treated stormwater can be used for flushing toilets and streets irrigation and agricultural use.
期刊介绍:
Urban Water Journal provides a forum for the research and professional communities dealing with water systems in the urban environment, directly contributing to the furtherance of sustainable development. Particular emphasis is placed on the analysis of interrelationships and interactions between the individual water systems, urban water bodies and the wider environment. The Journal encourages the adoption of an integrated approach, and system''s thinking to solve the numerous problems associated with sustainable urban water management.
Urban Water Journal focuses on the water-related infrastructure in the city: namely potable water supply, treatment and distribution; wastewater collection, treatment and management, and environmental return; storm drainage and urban flood management. Specific topics of interest include:
network design, optimisation, management, operation and rehabilitation;
novel treatment processes for water and wastewater, resource recovery, treatment plant design and optimisation as well as treatment plants as part of the integrated urban water system;
demand management and water efficiency, water recycling and source control;
stormwater management, urban flood risk quantification and management;
monitoring, utilisation and management of urban water bodies including groundwater;
water-sensitive planning and design (including analysis of interactions of the urban water cycle with city planning and green infrastructure);
resilience of the urban water system, long term scenarios to manage uncertainty, system stress testing;
data needs, smart metering and sensors, advanced data analytics for knowledge discovery, quantification and management of uncertainty, smart technologies for urban water systems;
decision-support and informatic tools;...