{"title":"模型驱动深度学习的大规模空域索引调制MIMO检测","authors":"Ping Yang, Qin Yi, Yiqian Huang, Jialiang Fu, Yue Xiao, Wanbin Tang","doi":"10.23919/jcc.fa.2023-0157.202310","DOIUrl":null,"url":null,"abstract":"In this paper, a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation (SDIM) based multiple input multiple output (MIMO) systems. Specifically, we use orthogonal approximate message passing (OAMP) technique to develop OAMPNet, which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples. For OAMPNet, the prior probability of the transmit signal has a significant impact on the obtainable performance. For this reason, in our design, we first derive the prior probability of transmitting signals on each antenna for SDIM-MIMO systems, which is different from the conventional massive MIMO systems. Then, for massive MIMO scenarios, we propose two novel algorithms to avoid pre-storing all active antenna combinations, thus considerably improving the memory efficiency and reducing the related overhead. Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"44 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-driven deep learning for massive space-domain index modulation MIMO detection\",\"authors\":\"Ping Yang, Qin Yi, Yiqian Huang, Jialiang Fu, Yue Xiao, Wanbin Tang\",\"doi\":\"10.23919/jcc.fa.2023-0157.202310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation (SDIM) based multiple input multiple output (MIMO) systems. Specifically, we use orthogonal approximate message passing (OAMP) technique to develop OAMPNet, which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples. For OAMPNet, the prior probability of the transmit signal has a significant impact on the obtainable performance. For this reason, in our design, we first derive the prior probability of transmitting signals on each antenna for SDIM-MIMO systems, which is different from the conventional massive MIMO systems. Then, for massive MIMO scenarios, we propose two novel algorithms to avoid pre-storing all active antenna combinations, thus considerably improving the memory efficiency and reducing the related overhead. Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.\",\"PeriodicalId\":9814,\"journal\":{\"name\":\"China Communications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/jcc.fa.2023-0157.202310\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.fa.2023-0157.202310","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Model-driven deep learning for massive space-domain index modulation MIMO detection
In this paper, a powerful model-driven deep learning framework is exploited to overcome the challenge of multi-domain signal detection in spacedomain index modulation (SDIM) based multiple input multiple output (MIMO) systems. Specifically, we use orthogonal approximate message passing (OAMP) technique to develop OAMPNet, which is a novel signal recovery mechanism in the field of compressed sensing that effectively uses the sparse property from the training SDIM samples. For OAMPNet, the prior probability of the transmit signal has a significant impact on the obtainable performance. For this reason, in our design, we first derive the prior probability of transmitting signals on each antenna for SDIM-MIMO systems, which is different from the conventional massive MIMO systems. Then, for massive MIMO scenarios, we propose two novel algorithms to avoid pre-storing all active antenna combinations, thus considerably improving the memory efficiency and reducing the related overhead. Our simulation results show that the proposed framework outperforms the conventional optimization-driven based detection algorithms and has strong robustness under different antenna scales.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.