基于改进偏振差成像方法的背景光偏振特性研究

None Xu Jing-Han, None Wu Guo-Jun, None Dong Jing, None Yu Yang, None Feng Fei, None Liu Bo
{"title":"基于改进偏振差成像方法的背景光偏振特性研究","authors":"None Xu Jing-Han, None Wu Guo-Jun, None Dong Jing, None Yu Yang, None Feng Fei, None Liu Bo","doi":"10.7498/aps.72.20230639","DOIUrl":null,"url":null,"abstract":"The random scattering event of light by water medium is the primary reason for the degradation in underwater imaging. Underwater polarization imaging technology can enhance the signal-to-noise ratio of imaging effectively by utilizing the polarization information difference between background scattered light and target light. However, as scattering events increase in the water body, it is difficult to maintain the polarization characteristics of light, which reduces the effect of removing scattering based on polarization characteristics. In addition, the polarization rules of background scattered light in water is unclear, and there is a lack of quantitative description of the polarization characteristics of scattered light. Therefore, researching the polarization transmission characteristics of underwater scattered light is of great significance for the de-scattering work of underwater polarization imaging.In order to clarify the polarization characteristics of underwater background scattered light, especially the polarization angle information, this paper proposes a method for ascertaining polarization angle of background light based on modified polarization difference imaging method. In this method, the coupling relationship between optimal weight coefficient and enhancement measure evaluation (EME) value of the Stokes vector difference result is analyzed, and the background light polarization angle is calculated based on the optimal weight coefficient. Combined with the experiments, the EME distribution trend of the optimal weight coefficient and the modified polarization difference imaging method results in different turbidity water bodies were determined, the scattering suppression limit was explored, and the trend of background scattered light polarization direction with turbidity of water was analyzed. The results show that the proposed method can obtain the exact polarization angle of background scattered light in different water environments, revealing a trend where the polarization direction of background scattered light becomes orthogonal to the incident light direction as the turbidity of the water increases. This research provides a methodological basis for determining the polarization direction of the background scattered light in underwater imaging.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on polarization characteristics of background light based on modified polarization difference imaging method\",\"authors\":\"None Xu Jing-Han, None Wu Guo-Jun, None Dong Jing, None Yu Yang, None Feng Fei, None Liu Bo\",\"doi\":\"10.7498/aps.72.20230639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The random scattering event of light by water medium is the primary reason for the degradation in underwater imaging. Underwater polarization imaging technology can enhance the signal-to-noise ratio of imaging effectively by utilizing the polarization information difference between background scattered light and target light. However, as scattering events increase in the water body, it is difficult to maintain the polarization characteristics of light, which reduces the effect of removing scattering based on polarization characteristics. In addition, the polarization rules of background scattered light in water is unclear, and there is a lack of quantitative description of the polarization characteristics of scattered light. Therefore, researching the polarization transmission characteristics of underwater scattered light is of great significance for the de-scattering work of underwater polarization imaging.In order to clarify the polarization characteristics of underwater background scattered light, especially the polarization angle information, this paper proposes a method for ascertaining polarization angle of background light based on modified polarization difference imaging method. In this method, the coupling relationship between optimal weight coefficient and enhancement measure evaluation (EME) value of the Stokes vector difference result is analyzed, and the background light polarization angle is calculated based on the optimal weight coefficient. Combined with the experiments, the EME distribution trend of the optimal weight coefficient and the modified polarization difference imaging method results in different turbidity water bodies were determined, the scattering suppression limit was explored, and the trend of background scattered light polarization direction with turbidity of water was analyzed. The results show that the proposed method can obtain the exact polarization angle of background scattered light in different water environments, revealing a trend where the polarization direction of background scattered light becomes orthogonal to the incident light direction as the turbidity of the water increases. This research provides a methodological basis for determining the polarization direction of the background scattered light in underwater imaging.\",\"PeriodicalId\":10252,\"journal\":{\"name\":\"Chinese Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20230639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20230639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水介质对光的随机散射是导致水下成像质量下降的主要原因。水下偏振成像技术利用背景散射光与目标光的偏振信息差,可以有效提高成像的信噪比。然而,随着水体中散射事件的增加,光的偏振特性难以保持,这降低了基于偏振特性去除散射的效果。此外,背景散射光在水中的偏振规律尚不清楚,缺乏对散射光偏振特性的定量描述。因此,研究水下散射光的偏振透射特性对水下偏振成像的去散射工作具有重要意义。为了明确水下背景散射光的偏振特性,特别是偏振角信息,本文提出了一种基于改进偏振差成像法的背景光偏振角确定方法。该方法分析Stokes矢量差分结果的最优权系数与增强措施评价(EME)值之间的耦合关系,并基于最优权系数计算背景光偏振角。结合实验,确定了最优权重系数和改进偏振差成像方法结果在不同浑浊度水体中的EME分布趋势,探索了散射抑制极限,分析了背景散射光偏振方向随水体浑浊度的变化趋势。结果表明,该方法能够准确地获得不同水体环境下背景散射光的偏振角,并呈现出随着水体浑浊度的增加,背景散射光的偏振方向与入射光方向正交的趋势。该研究为水下成像中背景散射光偏振方向的确定提供了方法学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on polarization characteristics of background light based on modified polarization difference imaging method
The random scattering event of light by water medium is the primary reason for the degradation in underwater imaging. Underwater polarization imaging technology can enhance the signal-to-noise ratio of imaging effectively by utilizing the polarization information difference between background scattered light and target light. However, as scattering events increase in the water body, it is difficult to maintain the polarization characteristics of light, which reduces the effect of removing scattering based on polarization characteristics. In addition, the polarization rules of background scattered light in water is unclear, and there is a lack of quantitative description of the polarization characteristics of scattered light. Therefore, researching the polarization transmission characteristics of underwater scattered light is of great significance for the de-scattering work of underwater polarization imaging.In order to clarify the polarization characteristics of underwater background scattered light, especially the polarization angle information, this paper proposes a method for ascertaining polarization angle of background light based on modified polarization difference imaging method. In this method, the coupling relationship between optimal weight coefficient and enhancement measure evaluation (EME) value of the Stokes vector difference result is analyzed, and the background light polarization angle is calculated based on the optimal weight coefficient. Combined with the experiments, the EME distribution trend of the optimal weight coefficient and the modified polarization difference imaging method results in different turbidity water bodies were determined, the scattering suppression limit was explored, and the trend of background scattered light polarization direction with turbidity of water was analyzed. The results show that the proposed method can obtain the exact polarization angle of background scattered light in different water environments, revealing a trend where the polarization direction of background scattered light becomes orthogonal to the incident light direction as the turbidity of the water increases. This research provides a methodological basis for determining the polarization direction of the background scattered light in underwater imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Theory of quantum holography based on two-photon Interference Back contact optimization for Sb<sub>2</sub>Se<sub>3</sub> solar cells Algorithms for calculating polarization direction based on spatial modulation of vector optical field Enhanced microwave absorption properties of large-sized monolayer two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> loaded with Fe<sub>3</sub>O<sub>4</sub> nanoparticles Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1