基于站点分集接收的5G NR节能免授权URLLC自适应重复传输

IF 0.7 4区 计算机科学 Q3 Engineering IEICE Transactions on Communications Pub Date : 2023-01-01 DOI:10.1587/transcom.2023wwp0006
Arif DATAESATU, Kosuke SANADA, Hiroyuki HATANO, Kazuo MORI, Pisit BOONSRIMUANG
{"title":"基于站点分集接收的5G NR节能免授权URLLC自适应重复传输","authors":"Arif DATAESATU, Kosuke SANADA, Hiroyuki HATANO, Kazuo MORI, Pisit BOONSRIMUANG","doi":"10.1587/transcom.2023wwp0006","DOIUrl":null,"url":null,"abstract":"The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.","PeriodicalId":48825,"journal":{"name":"IEICE Transactions on Communications","volume":"369 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive <i>K</i>-Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR\",\"authors\":\"Arif DATAESATU, Kosuke SANADA, Hiroyuki HATANO, Kazuo MORI, Pisit BOONSRIMUANG\",\"doi\":\"10.1587/transcom.2023wwp0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.\",\"PeriodicalId\":48825,\"journal\":{\"name\":\"IEICE Transactions on Communications\",\"volume\":\"369 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Transactions on Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transcom.2023wwp0006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transcom.2023wwp0006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

第五代(5G)新无线电(NR)标准采用超可靠和低延迟通信(URLLC)为物联网(IoT)应用提供实时无线交互能力。为了满足URLLC业务对延迟和可靠性的严格要求,引入了k - repeat transmission (K-Rep)的无授权传输(GF)。然而,衰落波动会对基站(BS)的信号质量产生负面影响,导致重复次数增加,并引发对物联网用户设备(UE)的干扰和能耗的担忧。为了克服这些挑战,本文提出了一种新的自适应K-Rep控制方案,该方案利用站点分集接收来提高信号质量并降低能耗。性能评估表明,与传统的K-Rep控制方案相比,所提出的自适应K-Rep控制方案显著提高了通信可靠性,降低了传输能耗,在满足URLLC要求的同时降低了能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive <i>K</i>-Repetition Transmission with Site Diversity Reception for Energy-Efficient Grant-Free URLLC in 5G NR
The fifth-generation (5G) new radio (NR) standard employs ultra-reliable and low-latency communication (URLLC) to provide real-time wireless interactive capability for the internet of things (IoT) applications. To satisfy the stringent latency and reliability demands of URLLC services, grant-free (GF) transmissions with the K-repetition transmission (K-Rep) have been introduced. However, fading fluctuations can negatively impact signal quality at the base station (BS), leading to an increase in the number of repetitions and raising concerns about interference and energy consumption for IoT user equipment (UE). To overcome these challenges, this paper proposes novel adaptive K-Rep control schemes that employ site diversity reception to enhance signal quality and reduce energy consumption. The performance evaluation demonstrates that the proposed adaptive K-Rep control schemes significantly improve communication reliability and reduce transmission energy consumption compared with the conventional K-Rep scheme, and then satisfy the URLLC requirements while reducing energy consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Transactions on Communications
IEICE Transactions on Communications ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
1.50
自引率
28.60%
发文量
101
期刊介绍: The IEICE Transactions on Communications is an all-electronic journal published occasionally by the Institute of Electronics, Information and Communication Engineers (IEICE) and edited by the Communications Society in IEICE. The IEICE Transactions on Communications publishes original, peer-reviewed papers that embrace the entire field of communications, including: - Fundamental Theories for Communications - Energy in Electronics Communications - Transmission Systems and Transmission Equipment for Communications - Optical Fiber for Communications - Fiber-Optic Transmission for Communications - Network System - Network - Internet - Network Management/Operation - Antennas and Propagation - Electromagnetic Compatibility (EMC) - Wireless Communication Technologies - Terrestrial Wireless Communication/Broadcasting Technologies - Satellite Communications - Sensing - Navigation, Guidance and Control Systems - Space Utilization Systems for Communications - Multimedia Systems for Communication
期刊最新文献
Service Deployment Model with Virtual Network Function Resizing Based on Per-Flow Priority Optimizing Edge-Cloud Cooperation for Machine Learning Accuracy Considering Transmission Latency and Bandwidth Congestion Intrusion Detection Model of Internet of Things Based on LightGBM Sub-Signal Channel Modulation for Hitless Redundancy Switching Systems A Resource-Efficient Green Paradigm For Crowdsensing Based Spectrum Detection In Internet of Things Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1