{"title":"智慧农业技术的未来:与物联网和机器学习相结合的城市垂直农业系统的意义","authors":"Jebakumar Rethnaraj","doi":"10.23880/oajar-16000308","DOIUrl":null,"url":null,"abstract":"World population in recent decades has significant impacts on the traditional agricultural systems which has resulted in increased demand for food, land use and deforestation, water scarcity, climate changes but not limited to these impacts. In order to overcome all these issues, there is a need for advanced farming technologies for growing the most demand food crops. Smart farming also known as precision agriculture has evolved which uses the advanced technology to optimize the efficiency and productivity of the farming operations. It involves the integration of various technologies such as IoT sensors, drones, robotics and machine learning technologies, big data analytics to gather data on crop growth, environmental conditions and weather patterns. Vertical framing (VF) is one such precision framing efficient crop growth practices which adapts the integration of Internet of Things (IoT) and machine learning (ML) technologies in easier manner. Since, the vertical farming is completely an indoor farming technique, they do not depend on the particular geographical locations and outdoor growth parameters (like soil) for crop cultivation; hence, vertical farming is also known as controlled environment agriculture. This article explores the significance of different indoor vertical farming practices under controlled environment with the comparative analysis, efficiency, productivity, advantages and their potential benefits highlighting the need for sustainable agricultural practices that can meet the growing demand for food while minimizing the negative environmental impacts.","PeriodicalId":497825,"journal":{"name":"Open access journal of agricultural research","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future of Smart Farming Techniques: Significance of Urban Vertical Farming Systems Integrated with IoT and Machine Learning\",\"authors\":\"Jebakumar Rethnaraj\",\"doi\":\"10.23880/oajar-16000308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"World population in recent decades has significant impacts on the traditional agricultural systems which has resulted in increased demand for food, land use and deforestation, water scarcity, climate changes but not limited to these impacts. In order to overcome all these issues, there is a need for advanced farming technologies for growing the most demand food crops. Smart farming also known as precision agriculture has evolved which uses the advanced technology to optimize the efficiency and productivity of the farming operations. It involves the integration of various technologies such as IoT sensors, drones, robotics and machine learning technologies, big data analytics to gather data on crop growth, environmental conditions and weather patterns. Vertical framing (VF) is one such precision framing efficient crop growth practices which adapts the integration of Internet of Things (IoT) and machine learning (ML) technologies in easier manner. Since, the vertical farming is completely an indoor farming technique, they do not depend on the particular geographical locations and outdoor growth parameters (like soil) for crop cultivation; hence, vertical farming is also known as controlled environment agriculture. This article explores the significance of different indoor vertical farming practices under controlled environment with the comparative analysis, efficiency, productivity, advantages and their potential benefits highlighting the need for sustainable agricultural practices that can meet the growing demand for food while minimizing the negative environmental impacts.\",\"PeriodicalId\":497825,\"journal\":{\"name\":\"Open access journal of agricultural research\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open access journal of agricultural research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/oajar-16000308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open access journal of agricultural research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/oajar-16000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Future of Smart Farming Techniques: Significance of Urban Vertical Farming Systems Integrated with IoT and Machine Learning
World population in recent decades has significant impacts on the traditional agricultural systems which has resulted in increased demand for food, land use and deforestation, water scarcity, climate changes but not limited to these impacts. In order to overcome all these issues, there is a need for advanced farming technologies for growing the most demand food crops. Smart farming also known as precision agriculture has evolved which uses the advanced technology to optimize the efficiency and productivity of the farming operations. It involves the integration of various technologies such as IoT sensors, drones, robotics and machine learning technologies, big data analytics to gather data on crop growth, environmental conditions and weather patterns. Vertical framing (VF) is one such precision framing efficient crop growth practices which adapts the integration of Internet of Things (IoT) and machine learning (ML) technologies in easier manner. Since, the vertical farming is completely an indoor farming technique, they do not depend on the particular geographical locations and outdoor growth parameters (like soil) for crop cultivation; hence, vertical farming is also known as controlled environment agriculture. This article explores the significance of different indoor vertical farming practices under controlled environment with the comparative analysis, efficiency, productivity, advantages and their potential benefits highlighting the need for sustainable agricultural practices that can meet the growing demand for food while minimizing the negative environmental impacts.