Si-Phu Le, Hong-Nhu Nguyen, Nhat-Tien Nguyen, Cuu Ho Van, Anh-Tu Le, Miroslav Voznak
{"title":"基于irs的下行和上行NOMA网络物理层安全性分析","authors":"Si-Phu Le, Hong-Nhu Nguyen, Nhat-Tien Nguyen, Cuu Ho Van, Anh-Tu Le, Miroslav Voznak","doi":"10.1186/s13638-023-02309-5","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, the development of intelligent reflecting surface (IRS) in wireless communications has enabled control of radio waves to reduce the detrimental impacts of natural wireless propagation. These can achieve significant spectrum and energy efficiency in wireless networks. Non-orthogonal multiple access (NOMA) technology, on the other hand, is predicted to improve the spectrum efficiency of fifth-generation and later wireless networks. Motivated by this reality, we consider the IRS-based NOMA network in the downlink and uplink scenario with a pernicious eavesdropper. Moreover, we investigated the physical layer security (PLS) of the proposed system by invoking the connection outage probability (COP), secrecy outage probability (SOP), and average secrecy rate (ASR) with analytical derivations. The simulation results reveal that (i) it is carried out to validate the analytical formulas, (ii) the number of meta-surfaces in IRS, transmit power at the base station, and power allocation parameters all play an essential role in improving the system performance, and (iii) it demonstrates the superiority of NOMA to the traditional orthogonal multiple access (OMA).","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"7 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical layer security analysis of IRS-based downlink and uplink NOMA networks\",\"authors\":\"Si-Phu Le, Hong-Nhu Nguyen, Nhat-Tien Nguyen, Cuu Ho Van, Anh-Tu Le, Miroslav Voznak\",\"doi\":\"10.1186/s13638-023-02309-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In recent years, the development of intelligent reflecting surface (IRS) in wireless communications has enabled control of radio waves to reduce the detrimental impacts of natural wireless propagation. These can achieve significant spectrum and energy efficiency in wireless networks. Non-orthogonal multiple access (NOMA) technology, on the other hand, is predicted to improve the spectrum efficiency of fifth-generation and later wireless networks. Motivated by this reality, we consider the IRS-based NOMA network in the downlink and uplink scenario with a pernicious eavesdropper. Moreover, we investigated the physical layer security (PLS) of the proposed system by invoking the connection outage probability (COP), secrecy outage probability (SOP), and average secrecy rate (ASR) with analytical derivations. The simulation results reveal that (i) it is carried out to validate the analytical formulas, (ii) the number of meta-surfaces in IRS, transmit power at the base station, and power allocation parameters all play an essential role in improving the system performance, and (iii) it demonstrates the superiority of NOMA to the traditional orthogonal multiple access (OMA).\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-023-02309-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13638-023-02309-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Physical layer security analysis of IRS-based downlink and uplink NOMA networks
Abstract In recent years, the development of intelligent reflecting surface (IRS) in wireless communications has enabled control of radio waves to reduce the detrimental impacts of natural wireless propagation. These can achieve significant spectrum and energy efficiency in wireless networks. Non-orthogonal multiple access (NOMA) technology, on the other hand, is predicted to improve the spectrum efficiency of fifth-generation and later wireless networks. Motivated by this reality, we consider the IRS-based NOMA network in the downlink and uplink scenario with a pernicious eavesdropper. Moreover, we investigated the physical layer security (PLS) of the proposed system by invoking the connection outage probability (COP), secrecy outage probability (SOP), and average secrecy rate (ASR) with analytical derivations. The simulation results reveal that (i) it is carried out to validate the analytical formulas, (ii) the number of meta-surfaces in IRS, transmit power at the base station, and power allocation parameters all play an essential role in improving the system performance, and (iii) it demonstrates the superiority of NOMA to the traditional orthogonal multiple access (OMA).
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.