Zili Xiong, Wei Shangguan, Vahid Nourani, Qingliang Li, Xingjie Lu, Lu Li, Feini Huang, Ye Zhang, Wenye Sun, Hua Yuan, Xueyan Li
{"title":"全球碳通量数据集与现有数据集的可靠性评估及其时空特征","authors":"Zili Xiong, Wei Shangguan, Vahid Nourani, Qingliang Li, Xingjie Lu, Lu Li, Feini Huang, Ye Zhang, Wenye Sun, Hua Yuan, Xueyan Li","doi":"10.3390/cli11100205","DOIUrl":null,"url":null,"abstract":"Land carbon fluxes play a critical role in ecosystems, and acquiring a comprehensive global database of carbon fluxes is essential for understanding the Earth’s carbon cycle. The primary methods of obtaining the spatial distribution of land carbon fluxes include utilizing machine learning models based on in situ measurements, estimating through satellite remote sensing, and simulating ecosystem models. Recently, an innovative machine learning product known as the Global Carbon Flux Dataset (GCFD) has been released. In this study, we assessed the reliability of the GCFD by comparing it with existing data products, including two machine learning products (FLUXCOM and NIES (National Institute for Environmental Studies)), two ecosystem model products (TRENDY and EC-LUE (eddy covariance–light use efficiency model)), and one remote sensing product (Global Land Surface Satellite), on both site and global scales. Our findings indicate that, in terms of average absolute difference, the spatial distribution of the GCFD is most similar to the NIES product, albeit with slightly larger discrepancies compared to the other two types of products. When using site observations as the benchmark, gross primary production (GPP), respiration of ecosystem (RECO), and net ecosystem exchange of machine learning products exhibit higher R2 (ranging from 0.57 to 0.85, 0.53–0.79, and 0.31–0.70, respectively) compared to model products and remote sensing products. Furthermore, we analyzed the spatial and temporal distribution characteristics of carbon fluxes in various regions. The results demonstrate an upward trend in both GPP and RECO over the past two decades, while NEE exhibits an opposite trend. This trend is particularly pronounced in tropical regions, where higher GPP is observed in tropical, subtropical, and oceanic climate zones. Additionally, two remote sensing variables that influence changes in carbon fluxes, i.e., fraction absorbed photosynthetically active radiation and leaf area index, exhibit relatively consistent spatial and temporal characteristics. Overall, our study can provide valuable insights into different types of carbon flux products and contribute to understanding the general features of global carbon fluxes.","PeriodicalId":37615,"journal":{"name":"Climate","volume":"1 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the Reliability of Global Carbon Flux Dataset Compared to Existing Datasets and Their Spatiotemporal Characteristics\",\"authors\":\"Zili Xiong, Wei Shangguan, Vahid Nourani, Qingliang Li, Xingjie Lu, Lu Li, Feini Huang, Ye Zhang, Wenye Sun, Hua Yuan, Xueyan Li\",\"doi\":\"10.3390/cli11100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land carbon fluxes play a critical role in ecosystems, and acquiring a comprehensive global database of carbon fluxes is essential for understanding the Earth’s carbon cycle. The primary methods of obtaining the spatial distribution of land carbon fluxes include utilizing machine learning models based on in situ measurements, estimating through satellite remote sensing, and simulating ecosystem models. Recently, an innovative machine learning product known as the Global Carbon Flux Dataset (GCFD) has been released. In this study, we assessed the reliability of the GCFD by comparing it with existing data products, including two machine learning products (FLUXCOM and NIES (National Institute for Environmental Studies)), two ecosystem model products (TRENDY and EC-LUE (eddy covariance–light use efficiency model)), and one remote sensing product (Global Land Surface Satellite), on both site and global scales. Our findings indicate that, in terms of average absolute difference, the spatial distribution of the GCFD is most similar to the NIES product, albeit with slightly larger discrepancies compared to the other two types of products. When using site observations as the benchmark, gross primary production (GPP), respiration of ecosystem (RECO), and net ecosystem exchange of machine learning products exhibit higher R2 (ranging from 0.57 to 0.85, 0.53–0.79, and 0.31–0.70, respectively) compared to model products and remote sensing products. Furthermore, we analyzed the spatial and temporal distribution characteristics of carbon fluxes in various regions. The results demonstrate an upward trend in both GPP and RECO over the past two decades, while NEE exhibits an opposite trend. This trend is particularly pronounced in tropical regions, where higher GPP is observed in tropical, subtropical, and oceanic climate zones. Additionally, two remote sensing variables that influence changes in carbon fluxes, i.e., fraction absorbed photosynthetically active radiation and leaf area index, exhibit relatively consistent spatial and temporal characteristics. Overall, our study can provide valuable insights into different types of carbon flux products and contribute to understanding the general features of global carbon fluxes.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli11100205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11100205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Assessing the Reliability of Global Carbon Flux Dataset Compared to Existing Datasets and Their Spatiotemporal Characteristics
Land carbon fluxes play a critical role in ecosystems, and acquiring a comprehensive global database of carbon fluxes is essential for understanding the Earth’s carbon cycle. The primary methods of obtaining the spatial distribution of land carbon fluxes include utilizing machine learning models based on in situ measurements, estimating through satellite remote sensing, and simulating ecosystem models. Recently, an innovative machine learning product known as the Global Carbon Flux Dataset (GCFD) has been released. In this study, we assessed the reliability of the GCFD by comparing it with existing data products, including two machine learning products (FLUXCOM and NIES (National Institute for Environmental Studies)), two ecosystem model products (TRENDY and EC-LUE (eddy covariance–light use efficiency model)), and one remote sensing product (Global Land Surface Satellite), on both site and global scales. Our findings indicate that, in terms of average absolute difference, the spatial distribution of the GCFD is most similar to the NIES product, albeit with slightly larger discrepancies compared to the other two types of products. When using site observations as the benchmark, gross primary production (GPP), respiration of ecosystem (RECO), and net ecosystem exchange of machine learning products exhibit higher R2 (ranging from 0.57 to 0.85, 0.53–0.79, and 0.31–0.70, respectively) compared to model products and remote sensing products. Furthermore, we analyzed the spatial and temporal distribution characteristics of carbon fluxes in various regions. The results demonstrate an upward trend in both GPP and RECO over the past two decades, while NEE exhibits an opposite trend. This trend is particularly pronounced in tropical regions, where higher GPP is observed in tropical, subtropical, and oceanic climate zones. Additionally, two remote sensing variables that influence changes in carbon fluxes, i.e., fraction absorbed photosynthetically active radiation and leaf area index, exhibit relatively consistent spatial and temporal characteristics. Overall, our study can provide valuable insights into different types of carbon flux products and contribute to understanding the general features of global carbon fluxes.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.