Mitchell M. Brown, Justin T. Telfer, Gustavious P. Williams, A. Woodruff Miller, Robert B. Sowby, Riley C. Hales, Kaylee B. Tanner
{"title":"与降水有关的大气沉降对犹他湖的养分负荷","authors":"Mitchell M. Brown, Justin T. Telfer, Gustavious P. Williams, A. Woodruff Miller, Robert B. Sowby, Riley C. Hales, Kaylee B. Tanner","doi":"10.3390/hydrology10100200","DOIUrl":null,"url":null,"abstract":"Atmospheric deposition (AD) is a less understood and quantified source of nutrient loading to waterbodies. AD occurs via settling (large particulates), contact (smaller particulates and gaseous matter), and precipitation (rain, snow) transport pathways. Utah Lake is a shallow eutrophic freshwater lake located in central Utah, USA, with geophysical characteristics that make it particularly susceptible to AD-related nutrient loading. Studies have shown AD to be a significant contributor to the lake’s nutrient budget. This study analyzes nutrient samples from nine locations around the lake and four precipitation gauges over a 6-year study period using three different methods to estimate AD from the precipitation transport pathway. The methods used are simple averaging, Thiessen polygons, and inverse distance weighting, which we use to spatially interpolate point sample data to estimate nutrient lake loads. We hold that the inverse distance weighting method produces the most accurate results. We quantify, present, and compare nutrient loads and nutrient loading rates for total phosphorus (TP), total inorganic nitrogen (TIN), and ortho phosphate (OP) from precipitation events. We compute loading rates for the calendar year (Mg/yr) from each of the three analysis methods along with monthly loading rates where Mg is 106 g. Our estimated annual precipitation AD loads for TP, OP, and TIN are 120.96 Mg/yr (132.97 tons/yr), 60.87 Mg/yr (67.1 tons/yr), and 435 Mg/yr (479.5 tons/yr), respectively. We compare these results with published data on total AD nutrient loads and show that AD from precipitation is a significant nutrient source for Utah Lake, contributing between 25% and 40% of the total AD nutrient load to the lake.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"38 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nutrient Loadings to Utah Lake from Precipitation-Related Atmospheric Deposition\",\"authors\":\"Mitchell M. Brown, Justin T. Telfer, Gustavious P. Williams, A. Woodruff Miller, Robert B. Sowby, Riley C. Hales, Kaylee B. Tanner\",\"doi\":\"10.3390/hydrology10100200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric deposition (AD) is a less understood and quantified source of nutrient loading to waterbodies. AD occurs via settling (large particulates), contact (smaller particulates and gaseous matter), and precipitation (rain, snow) transport pathways. Utah Lake is a shallow eutrophic freshwater lake located in central Utah, USA, with geophysical characteristics that make it particularly susceptible to AD-related nutrient loading. Studies have shown AD to be a significant contributor to the lake’s nutrient budget. This study analyzes nutrient samples from nine locations around the lake and four precipitation gauges over a 6-year study period using three different methods to estimate AD from the precipitation transport pathway. The methods used are simple averaging, Thiessen polygons, and inverse distance weighting, which we use to spatially interpolate point sample data to estimate nutrient lake loads. We hold that the inverse distance weighting method produces the most accurate results. We quantify, present, and compare nutrient loads and nutrient loading rates for total phosphorus (TP), total inorganic nitrogen (TIN), and ortho phosphate (OP) from precipitation events. We compute loading rates for the calendar year (Mg/yr) from each of the three analysis methods along with monthly loading rates where Mg is 106 g. Our estimated annual precipitation AD loads for TP, OP, and TIN are 120.96 Mg/yr (132.97 tons/yr), 60.87 Mg/yr (67.1 tons/yr), and 435 Mg/yr (479.5 tons/yr), respectively. We compare these results with published data on total AD nutrient loads and show that AD from precipitation is a significant nutrient source for Utah Lake, contributing between 25% and 40% of the total AD nutrient load to the lake.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10100200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10100200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Nutrient Loadings to Utah Lake from Precipitation-Related Atmospheric Deposition
Atmospheric deposition (AD) is a less understood and quantified source of nutrient loading to waterbodies. AD occurs via settling (large particulates), contact (smaller particulates and gaseous matter), and precipitation (rain, snow) transport pathways. Utah Lake is a shallow eutrophic freshwater lake located in central Utah, USA, with geophysical characteristics that make it particularly susceptible to AD-related nutrient loading. Studies have shown AD to be a significant contributor to the lake’s nutrient budget. This study analyzes nutrient samples from nine locations around the lake and four precipitation gauges over a 6-year study period using three different methods to estimate AD from the precipitation transport pathway. The methods used are simple averaging, Thiessen polygons, and inverse distance weighting, which we use to spatially interpolate point sample data to estimate nutrient lake loads. We hold that the inverse distance weighting method produces the most accurate results. We quantify, present, and compare nutrient loads and nutrient loading rates for total phosphorus (TP), total inorganic nitrogen (TIN), and ortho phosphate (OP) from precipitation events. We compute loading rates for the calendar year (Mg/yr) from each of the three analysis methods along with monthly loading rates where Mg is 106 g. Our estimated annual precipitation AD loads for TP, OP, and TIN are 120.96 Mg/yr (132.97 tons/yr), 60.87 Mg/yr (67.1 tons/yr), and 435 Mg/yr (479.5 tons/yr), respectively. We compare these results with published data on total AD nutrient loads and show that AD from precipitation is a significant nutrient source for Utah Lake, contributing between 25% and 40% of the total AD nutrient load to the lake.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.