利用深度样条神经网络逼近Lipschitz函数

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2023-05-15 DOI:10.1137/22m1504573
Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, Michael Unser
{"title":"利用深度样条神经网络逼近Lipschitz函数","authors":"Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, Michael Unser","doi":"10.1137/22m1504573","DOIUrl":null,"url":null,"abstract":"Although Lipschitz-constrained neural networks have many applications in machine learning, the design and training of expressive Lipschitz-constrained networks is very challenging. Since the popular rectified linear-unit networks have provable disadvantages in this setting, we propose using learnable spline activation functions with at least three linear regions instead. We prove that our choice is universal among all componentwise 1-Lipschitz activation functions in the sense that no other weight-constrained architecture can approximate a larger class of functions. Additionally, our choice is at least as expressive as the recently introduced non-componentwise Groupsort activation function for spectral-norm-constrained weights. The theoretical findings of this paper are consistent with previously published numerical results.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"7 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximation of Lipschitz Functions Using Deep Spline Neural Networks\",\"authors\":\"Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, Michael Unser\",\"doi\":\"10.1137/22m1504573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although Lipschitz-constrained neural networks have many applications in machine learning, the design and training of expressive Lipschitz-constrained networks is very challenging. Since the popular rectified linear-unit networks have provable disadvantages in this setting, we propose using learnable spline activation functions with at least three linear regions instead. We prove that our choice is universal among all componentwise 1-Lipschitz activation functions in the sense that no other weight-constrained architecture can approximate a larger class of functions. Additionally, our choice is at least as expressive as the recently introduced non-componentwise Groupsort activation function for spectral-norm-constrained weights. The theoretical findings of this paper are consistent with previously published numerical results.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1504573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1504573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

尽管lipschitz约束神经网络在机器学习中有很多应用,但表达性lipschitz约束网络的设计和训练是非常具有挑战性的。由于流行的整流线性单元网络在这种情况下具有可证明的缺点,我们建议使用具有至少三个线性区域的可学习样条激活函数来代替。我们证明了我们的选择在所有组件1-Lipschitz激活函数中是通用的,因为没有其他权重约束的架构可以近似更大的函数类。此外,我们的选择至少与最近引入的用于频谱范数约束权重的非组件分组排序激活函数一样具有表现力。本文的理论结果与先前发表的数值结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximation of Lipschitz Functions Using Deep Spline Neural Networks
Although Lipschitz-constrained neural networks have many applications in machine learning, the design and training of expressive Lipschitz-constrained networks is very challenging. Since the popular rectified linear-unit networks have provable disadvantages in this setting, we propose using learnable spline activation functions with at least three linear regions instead. We prove that our choice is universal among all componentwise 1-Lipschitz activation functions in the sense that no other weight-constrained architecture can approximate a larger class of functions. Additionally, our choice is at least as expressive as the recently introduced non-componentwise Groupsort activation function for spectral-norm-constrained weights. The theoretical findings of this paper are consistent with previously published numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1