{"title":"带有预测的合同调度","authors":"Spyros Angelopoulos, Shahin Kamali","doi":"10.1613/jair.1.14117","DOIUrl":null,"url":null,"abstract":"Contract scheduling is a general technique that allows the design of systems with interruptible capabilities, given an algorithm that is not necessarily interruptible. Previous work on this topic has assumed that the interruption is a worst-case deadline that is unknown to the scheduler. In this work, we study new settings in which the scheduler has access to some imperfect prediction in regards to the interruption. In the first setting, which is inspired by recent advances in learning-enhanced algorithms, the prediction describes the time that the interruption occurs. The second setting introduces a new model in which predictions are elicited as responses to a number of binary queries. For both settings, we investigate trade-offs between the robustness (i.e., the worst-case performance of the schedule if the prediction is generated adversarially) and the consistency (i.e., the performance assuming that the prediction is error-free). We also establish results on the performance of the schedules as a function of the prediction error.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":"93 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contract Scheduling with Predictions\",\"authors\":\"Spyros Angelopoulos, Shahin Kamali\",\"doi\":\"10.1613/jair.1.14117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contract scheduling is a general technique that allows the design of systems with interruptible capabilities, given an algorithm that is not necessarily interruptible. Previous work on this topic has assumed that the interruption is a worst-case deadline that is unknown to the scheduler. In this work, we study new settings in which the scheduler has access to some imperfect prediction in regards to the interruption. In the first setting, which is inspired by recent advances in learning-enhanced algorithms, the prediction describes the time that the interruption occurs. The second setting introduces a new model in which predictions are elicited as responses to a number of binary queries. For both settings, we investigate trade-offs between the robustness (i.e., the worst-case performance of the schedule if the prediction is generated adversarially) and the consistency (i.e., the performance assuming that the prediction is error-free). We also establish results on the performance of the schedules as a function of the prediction error.\",\"PeriodicalId\":54877,\"journal\":{\"name\":\"Journal of Artificial Intelligence Research\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1613/jair.1.14117\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1613/jair.1.14117","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Contract scheduling is a general technique that allows the design of systems with interruptible capabilities, given an algorithm that is not necessarily interruptible. Previous work on this topic has assumed that the interruption is a worst-case deadline that is unknown to the scheduler. In this work, we study new settings in which the scheduler has access to some imperfect prediction in regards to the interruption. In the first setting, which is inspired by recent advances in learning-enhanced algorithms, the prediction describes the time that the interruption occurs. The second setting introduces a new model in which predictions are elicited as responses to a number of binary queries. For both settings, we investigate trade-offs between the robustness (i.e., the worst-case performance of the schedule if the prediction is generated adversarially) and the consistency (i.e., the performance assuming that the prediction is error-free). We also establish results on the performance of the schedules as a function of the prediction error.
期刊介绍:
JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.