{"title":"奇异摄动对流扩散问题局部不连续Galerkin方法的超逼近性","authors":"Yao Cheng, Shan Jiang, Martin Stynes","doi":"10.1090/mcom/3844","DOIUrl":null,"url":null,"abstract":"A singularly perturbed convection-diffusion problem posed on the unit square in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{-(k+1/2)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accurate in the energy norm induced by the bilinear form of the weak formulation, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{-(k+1)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Superscript minus left-parenthesis k plus 1 right-parenthesis\"> <mml:semantics> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">N^{-(k+1)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"5 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem\",\"authors\":\"Yao Cheng, Shan Jiang, Martin Stynes\",\"doi\":\"10.1090/mcom/3844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A singularly perturbed convection-diffusion problem posed on the unit square in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R squared\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(N^{-(k+1/2)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accurate in the energy norm induced by the bilinear form of the weak formulation, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(N^{-(k+1)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N Superscript minus left-parenthesis k plus 1 right-parenthesis\\\"> <mml:semantics> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">N^{-(k+1)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound for the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3844\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem
A singularly perturbed convection-diffusion problem posed on the unit square in R2\mathbb {R}^2, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most k>0k>0 on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than O(N−(k+1/2))O(N^{-(k+1/2)}) accurate in the energy norm induced by the bilinear form of the weak formulation, where NN mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish O(N−(k+1))O(N^{-(k+1)}) energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new N−(k+1)N^{-(k+1)} bound for the L2L^2 error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.