奇异摄动对流扩散问题局部不连续Galerkin方法的超逼近性

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Mathematics of Computation Pub Date : 2023-05-04 DOI:10.1090/mcom/3844
Yao Cheng, Shan Jiang, Martin Stynes
{"title":"奇异摄动对流扩散问题局部不连续Galerkin方法的超逼近性","authors":"Yao Cheng, Shan Jiang, Martin Stynes","doi":"10.1090/mcom/3844","DOIUrl":null,"url":null,"abstract":"A singularly perturbed convection-diffusion problem posed on the unit square in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{-(k+1/2)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accurate in the energy norm induced by the bilinear form of the weak formulation, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\"application/x-tex\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{-(k+1)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N Superscript minus left-parenthesis k plus 1 right-parenthesis\"> <mml:semantics> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">N^{-(k+1)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound for the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"5 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem\",\"authors\":\"Yao Cheng, Shan Jiang, Martin Stynes\",\"doi\":\"10.1090/mcom/3844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A singularly perturbed convection-diffusion problem posed on the unit square in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R squared\\\"> <mml:semantics> <mml:msup> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k&gt;0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 slash 2 right-parenthesis Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(N^{-(k+1/2)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> accurate in the energy norm induced by the bilinear form of the weak formulation, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N\\\"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis upper N Superscript minus left-parenthesis k plus 1 right-parenthesis Baseline right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">O(N^{-(k+1)})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper N Superscript minus left-parenthesis k plus 1 right-parenthesis\\\"> <mml:semantics> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo>−<!-- − --></mml:mo> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">N^{-(k+1)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> bound for the <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L squared\\\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">L^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3844\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3844","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

利用局部不连续伽辽金(LDG)方法,用最大为k >次的张量积分段多项式数值求解了r2 \mathbb {R}^2中单位方阵上的奇摄动对流扩散问题,其解具有指数边界层;在三种层适应网格上:shishkin型,bakhvalov - shishkin型和bakhvalov型。在shishkin型网格上,已知该方法在弱公式双线性形式诱导的能量范数上不大于O(N−(k+1/2)) O(N^{-(k+1/2)}),其中在每个坐标方向上使用N N网格间隔。(注意:本文中所有的边界在奇异扰动参数下都是一致的,忽略了我们详细分析中会出现的对数因子。)对于LDG解与真解在有限元空间的局部高斯-拉道投影之间的差异,本文用一个微妙的论证在所有三种网格上建立了O(N−(k+1)) O(N^{-(k+1)})能量范数超收敛性。这种超接近性意味着每种网格上的LDG解与问题的真实解之间的l2l ^2误差有一个新的N−(k+1) N^{-(k+1)}界;这个边界是最优的(直到对数因子)。数值实验证实了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem
A singularly perturbed convection-diffusion problem posed on the unit square in R 2 \mathbb {R}^2 , whose solution has exponential boundary layers, is solved numerically using the local discontinuous Galerkin (LDG) method with tensor-product piecewise polynomials of degree at most k > 0 k>0 on three families of layer-adapted meshes: Shishkin-type, Bakhvalov-Shishkin-type and Bakhvalov-type. On Shishkin-type meshes this method is known to be no greater than O ( N ( k + 1 / 2 ) ) O(N^{-(k+1/2)}) accurate in the energy norm induced by the bilinear form of the weak formulation, where N N mesh intervals are used in each coordinate direction. (Note: all bounds in this abstract are uniform in the singular perturbation parameter and neglect logarithmic factors that will appear in our detailed analysis.) A delicate argument is used in this paper to establish O ( N ( k + 1 ) ) O(N^{-(k+1)}) energy-norm superconvergence on all three types of mesh for the difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This supercloseness property implies a new N ( k + 1 ) N^{-(k+1)} bound for the L 2 L^2 error between the LDG solution on each type of mesh and the true solution of the problem; this bound is optimal (up to logarithmic factors). Numerical experiments confirm our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
期刊最新文献
Error bounds for Gauss–Jacobi quadrature of analytic functions on an ellipse Müntz Legendre polynomials: Approximation properties and applications A random active set method for strictly convex quadratic problem with simple bounds Fourier optimization and Montgomery’s pair correlation conjecture Virtual element methods for Biot–Kirchhoff poroelasticity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1