机器人辅助喷涂应用中自主离线路径生成研究进展

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL Actuators Pub Date : 2023-10-28 DOI:10.3390/act12110403
Alexander Miguel Weber, Ernesto Gambao, Alberto Brunete
{"title":"机器人辅助喷涂应用中自主离线路径生成研究进展","authors":"Alexander Miguel Weber, Ernesto Gambao, Alberto Brunete","doi":"10.3390/act12110403","DOIUrl":null,"url":null,"abstract":"Robot-assisted spraying is a widespread manufacturing process for coating a multitude of mechanical components in an efficient and cost-effective way. However, process preparation is very time-consuming and relies heavily on the expertise of the robot programmer for generating the appropriate robot trajectory. For this reason, industry and academia investigate the possibility of supporting the end-user in the process by the use of appropriate algorithms. Mostly partial concepts can be found in the literature instead of a solution that solves this task end-to-end. This survey paper provides a summary of previous research in this field, listing the frameworks developed with the intention of fully automating the coating processes. First, the main inputs required for the trajectory calculation are described. The path-generating algorithm and its subprocesses are then classified and compared with alternative approaches. Finally, the required information for the executable output program is described, as well as the validation tools to keep track of program performance. The paper comes to the conclusion that there is a demand for an autonomous robot-assisted spraying system, and with a call-for-action for the implementation of the holistic framework.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"131 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Survey on Autonomous Offline Path Generation for Robot-Assisted Spraying Applications\",\"authors\":\"Alexander Miguel Weber, Ernesto Gambao, Alberto Brunete\",\"doi\":\"10.3390/act12110403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot-assisted spraying is a widespread manufacturing process for coating a multitude of mechanical components in an efficient and cost-effective way. However, process preparation is very time-consuming and relies heavily on the expertise of the robot programmer for generating the appropriate robot trajectory. For this reason, industry and academia investigate the possibility of supporting the end-user in the process by the use of appropriate algorithms. Mostly partial concepts can be found in the literature instead of a solution that solves this task end-to-end. This survey paper provides a summary of previous research in this field, listing the frameworks developed with the intention of fully automating the coating processes. First, the main inputs required for the trajectory calculation are described. The path-generating algorithm and its subprocesses are then classified and compared with alternative approaches. Finally, the required information for the executable output program is described, as well as the validation tools to keep track of program performance. The paper comes to the conclusion that there is a demand for an autonomous robot-assisted spraying system, and with a call-for-action for the implementation of the holistic framework.\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/act12110403\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/act12110403","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

机器人辅助喷涂是一种广泛的制造工艺,用于以高效和经济的方式喷涂多种机械部件。然而,过程准备是非常耗时的,并且在很大程度上依赖于机器人程序员的专业知识来生成适当的机器人轨迹。出于这个原因,工业界和学术界正在研究通过使用适当的算法来支持最终用户的可能性。大多数部分概念可以在文献中找到,而不是端到端解决此任务的解决方案。本调查报告概述了该领域以前的研究,列出了为实现涂层过程完全自动化而开发的框架。首先,描述了弹道计算所需的主要输入。然后对路径生成算法及其子过程进行分类,并与备选方法进行比较。最后,描述了可执行输出程序所需的信息,以及跟踪程序性能的验证工具。本文得出的结论是,有一个自主机器人辅助喷涂系统的需求,并呼吁采取行动的整体框架的实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey on Autonomous Offline Path Generation for Robot-Assisted Spraying Applications
Robot-assisted spraying is a widespread manufacturing process for coating a multitude of mechanical components in an efficient and cost-effective way. However, process preparation is very time-consuming and relies heavily on the expertise of the robot programmer for generating the appropriate robot trajectory. For this reason, industry and academia investigate the possibility of supporting the end-user in the process by the use of appropriate algorithms. Mostly partial concepts can be found in the literature instead of a solution that solves this task end-to-end. This survey paper provides a summary of previous research in this field, listing the frameworks developed with the intention of fully automating the coating processes. First, the main inputs required for the trajectory calculation are described. The path-generating algorithm and its subprocesses are then classified and compared with alternative approaches. Finally, the required information for the executable output program is described, as well as the validation tools to keep track of program performance. The paper comes to the conclusion that there is a demand for an autonomous robot-assisted spraying system, and with a call-for-action for the implementation of the holistic framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
期刊最新文献
Current State, Needs, and Opportunities for Wearable Robots in Military Medical Rehabilitation and Force Protection. Numerical Investigation on the Evolution Process of Different Vortex Structures and Distributed Blowing Control for Dynamic Stall Suppression of Rotor Airfoils Experimental Research on Avoidance Obstacle Control for Mobile Robots Using Q-Learning (QL) and Deep Q-Learning (DQL) Algorithms in Dynamic Environments Design and Control of a Reconfigurable Robot with Rolling and Flying Locomotion Dynamic Path Planning for Mobile Robots by Integrating Improved Sparrow Search Algorithm and Dynamic Window Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1