预测急诊科病人住院时间的机器学习方法

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Computational Intelligence and Soft Computing Pub Date : 2023-10-27 DOI:10.1155/2023/8063846
Mohammad A. Shbool, Omar S. Arabeyyat, Ammar Al-Bazi, Abeer Al-Hyari, Arwa Salem, Thana’ Abu-Hmaid, Malak Ali
{"title":"预测急诊科病人住院时间的机器学习方法","authors":"Mohammad A. Shbool, Omar S. Arabeyyat, Ammar Al-Bazi, Abeer Al-Hyari, Arwa Salem, Thana’ Abu-Hmaid, Malak Ali","doi":"10.1155/2023/8063846","DOIUrl":null,"url":null,"abstract":"As the COVID-19 pandemic has afflicted the globe, health systems worldwide have also been significantly affected. This pandemic has impacted many sectors, including health in the Kingdom of Jordan. Crises that put heavy pressure on the health systems’ shoulders include the emergency departments (ED), the most demanded hospital resources during normal conditions, and critical during crises. However, managing the health systems efficiently and achieving the best planning and allocation of their EDs’ resources becomes crucial to improve their capabilities to accommodate the crisis’s impact. Knowing critical factors affecting the patient length of stay prediction is critical to reducing the risks of prolonged waiting and clustering inside EDs. That is, by focusing on these factors and analyzing the effect of each. This research aims to determine the critical factors that predict the outcome: the length of stay, i.e., the predictor variables. Therefore, patients’ length of stay in EDs across waiting time duration is categorized as (low, medium, and high) using supervised machine learning (ML) approaches. Unsupervised algorithms have been applied to classify the patient’s length of stay in local EDs in the Kingdom of Jordan. The Arab Medical Centre Hospital is selected as a case study to justify the performance of the proposed ML model. Data that spans a time interval of 22 months, covering the period before and after COVID-19, is used to train the proposed feedforward network. The proposed model is compared with other ML approaches to justify its superiority. Also, comparative and correlation analyses are conducted on the considered attributes (inputs) to help classify the LOS and the patient’s length of stay in the ED. The best algorithms to be used are the trees such as the decision stump, REB tree, and Random Forest and the multilayer perceptron (with batch sizes of 50 and 0.001 learning rate) for this specific problem. Results showed better performance in terms of accuracy and easiness of implementation.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":"49 7","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approaches to Predict Patient’s Length of Stay in Emergency Department\",\"authors\":\"Mohammad A. Shbool, Omar S. Arabeyyat, Ammar Al-Bazi, Abeer Al-Hyari, Arwa Salem, Thana’ Abu-Hmaid, Malak Ali\",\"doi\":\"10.1155/2023/8063846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the COVID-19 pandemic has afflicted the globe, health systems worldwide have also been significantly affected. This pandemic has impacted many sectors, including health in the Kingdom of Jordan. Crises that put heavy pressure on the health systems’ shoulders include the emergency departments (ED), the most demanded hospital resources during normal conditions, and critical during crises. However, managing the health systems efficiently and achieving the best planning and allocation of their EDs’ resources becomes crucial to improve their capabilities to accommodate the crisis’s impact. Knowing critical factors affecting the patient length of stay prediction is critical to reducing the risks of prolonged waiting and clustering inside EDs. That is, by focusing on these factors and analyzing the effect of each. This research aims to determine the critical factors that predict the outcome: the length of stay, i.e., the predictor variables. Therefore, patients’ length of stay in EDs across waiting time duration is categorized as (low, medium, and high) using supervised machine learning (ML) approaches. Unsupervised algorithms have been applied to classify the patient’s length of stay in local EDs in the Kingdom of Jordan. The Arab Medical Centre Hospital is selected as a case study to justify the performance of the proposed ML model. Data that spans a time interval of 22 months, covering the period before and after COVID-19, is used to train the proposed feedforward network. The proposed model is compared with other ML approaches to justify its superiority. Also, comparative and correlation analyses are conducted on the considered attributes (inputs) to help classify the LOS and the patient’s length of stay in the ED. The best algorithms to be used are the trees such as the decision stump, REB tree, and Random Forest and the multilayer perceptron (with batch sizes of 50 and 0.001 learning rate) for this specific problem. Results showed better performance in terms of accuracy and easiness of implementation.\",\"PeriodicalId\":44894,\"journal\":{\"name\":\"Applied Computational Intelligence and Soft Computing\",\"volume\":\"49 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Intelligence and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8063846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8063846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着COVID-19大流行在全球范围内肆虐,世界各地的卫生系统也受到了重大影响。这一大流行病影响到许多部门,包括约旦王国的卫生部门。给卫生系统带来沉重压力的危机包括急诊科(ED),它在正常情况下是医院资源需求最大的部门,在危机期间则是关键部门。然而,有效地管理卫生系统并实现最佳规划和分配其急诊科资源对于提高其适应危机影响的能力至关重要。了解影响患者住院时间预测的关键因素对于减少长时间等待和聚集在急诊室的风险至关重要。也就是说,通过关注这些因素并分析每个因素的影响。本研究旨在确定预测结果的关键因素:住院时间,即预测变量。因此,使用监督机器学习(ML)方法,将患者在急诊室的等待时间分为(低、中、高)三个级别。在约旦王国,已应用无监督算法对患者在当地急诊室的住院时间进行分类。选择阿拉伯医疗中心医院作为案例研究,以证明所提议的机器学习模型的性能。数据跨度为22个月,涵盖了COVID-19之前和之后的时间间隔,用于训练所提出的前馈网络。将所提出的模型与其他ML方法进行比较,以证明其优越性。此外,还对考虑的属性(输入)进行了比较和相关性分析,以帮助对LOS和患者在急诊室的住院时间进行分类。对于这个特定问题,使用的最佳算法是决策树桩、REB树和随机森林等树和多层感知器(批大小为50,学习率为0.001)。结果表明,该方法具有较好的准确性和易于实现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Approaches to Predict Patient’s Length of Stay in Emergency Department
As the COVID-19 pandemic has afflicted the globe, health systems worldwide have also been significantly affected. This pandemic has impacted many sectors, including health in the Kingdom of Jordan. Crises that put heavy pressure on the health systems’ shoulders include the emergency departments (ED), the most demanded hospital resources during normal conditions, and critical during crises. However, managing the health systems efficiently and achieving the best planning and allocation of their EDs’ resources becomes crucial to improve their capabilities to accommodate the crisis’s impact. Knowing critical factors affecting the patient length of stay prediction is critical to reducing the risks of prolonged waiting and clustering inside EDs. That is, by focusing on these factors and analyzing the effect of each. This research aims to determine the critical factors that predict the outcome: the length of stay, i.e., the predictor variables. Therefore, patients’ length of stay in EDs across waiting time duration is categorized as (low, medium, and high) using supervised machine learning (ML) approaches. Unsupervised algorithms have been applied to classify the patient’s length of stay in local EDs in the Kingdom of Jordan. The Arab Medical Centre Hospital is selected as a case study to justify the performance of the proposed ML model. Data that spans a time interval of 22 months, covering the period before and after COVID-19, is used to train the proposed feedforward network. The proposed model is compared with other ML approaches to justify its superiority. Also, comparative and correlation analyses are conducted on the considered attributes (inputs) to help classify the LOS and the patient’s length of stay in the ED. The best algorithms to be used are the trees such as the decision stump, REB tree, and Random Forest and the multilayer perceptron (with batch sizes of 50 and 0.001 learning rate) for this specific problem. Results showed better performance in terms of accuracy and easiness of implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computational Intelligence and Soft Computing
Applied Computational Intelligence and Soft Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
6.10
自引率
3.40%
发文量
59
审稿时长
21 weeks
期刊介绍: Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.
期刊最新文献
Performance Augmentation of Base Classifiers Using Adaptive Boosting Framework for Medical Datasets An Intelligent Framework Based on Deep Learning for Online Quran Learning during Pandemic Corrigendum to “An Efficient Blind Image Deblurring Using a Smoothing Function” Aspect-Based Sentiment Analysis for Afaan Oromoo Movie Reviews Using Machine Learning Techniques Applications of Quantum Probability Amplitude in Decision Support Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1