Amy M. Gancarz, Raveena Parmar, Treefa Shwani, Moriah M. Cobb, Michelle N. Crawford, Jacob R. Watson, Lisa Evans, Michael A. Kausch, Craig T. Werner, David M. Dietz
{"title":"青少年接触蔗糖会通过Smad3增加成年期可卡因介导的行为","authors":"Amy M. Gancarz, Raveena Parmar, Treefa Shwani, Moriah M. Cobb, Michelle N. Crawford, Jacob R. Watson, Lisa Evans, Michael A. Kausch, Craig T. Werner, David M. Dietz","doi":"10.1111/adb.13346","DOIUrl":null,"url":null,"abstract":"<p>Adolescence, a critical period of developmental period, is marked by neurobiological changes influenced by environmental factors. Here, we show how exposure to sucrose, which is ubiquitously available in modern diets, results in changes in behavioural response to cocaine as an adult. Rats were given daily access to either 10% sucrose or water during the adolescent period (PND28–42). Following this period, rats are left undisturbed until they reach adulthood. In adulthood, rats were tested for (i) acquisition of a low dose of cocaine, (ii) progressive ratio (PR) test, and (iii) resistance to punished cocaine taking. Sucrose exposure resulted in significant alterations in all behavioural measures. To determine the neurobiological mechanisms leading to such behavioural adaptations, we find that adolescent sucrose exposure results in an upregulation of the transcription factor Smad3 in the nucleus accumbens (NAc) when compared with water-exposed controls. Transiently blocking the active form of this transcription factor (HSV-dnSmad3) during adolescence mitigated the enhanced cocaine vulnerability-like behaviours observed in adulthood. These findings suggest that prior exposure to sucrose during adolescence can heighten the reinforcing effects of cocaine. Furthermore, they identify the TGF-beta pathway and Smad3 as playing a key role in mediating enduring and long-lasting adaptations that contribute to sucrose-induced susceptibility to cocaine. Taken together, these results have important implications for development and suggest that adolescent sucrose exposure may persistently enhance the susceptibility to substance abuse.</p>","PeriodicalId":7289,"journal":{"name":"Addiction Biology","volume":"28 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/adb.13346","citationCount":"0","resultStr":"{\"title\":\"Adolescent exposure to sucrose increases cocaine-mediated behaviours in adulthood via Smad3\",\"authors\":\"Amy M. Gancarz, Raveena Parmar, Treefa Shwani, Moriah M. Cobb, Michelle N. Crawford, Jacob R. Watson, Lisa Evans, Michael A. Kausch, Craig T. Werner, David M. Dietz\",\"doi\":\"10.1111/adb.13346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adolescence, a critical period of developmental period, is marked by neurobiological changes influenced by environmental factors. Here, we show how exposure to sucrose, which is ubiquitously available in modern diets, results in changes in behavioural response to cocaine as an adult. Rats were given daily access to either 10% sucrose or water during the adolescent period (PND28–42). Following this period, rats are left undisturbed until they reach adulthood. In adulthood, rats were tested for (i) acquisition of a low dose of cocaine, (ii) progressive ratio (PR) test, and (iii) resistance to punished cocaine taking. Sucrose exposure resulted in significant alterations in all behavioural measures. To determine the neurobiological mechanisms leading to such behavioural adaptations, we find that adolescent sucrose exposure results in an upregulation of the transcription factor Smad3 in the nucleus accumbens (NAc) when compared with water-exposed controls. Transiently blocking the active form of this transcription factor (HSV-dnSmad3) during adolescence mitigated the enhanced cocaine vulnerability-like behaviours observed in adulthood. These findings suggest that prior exposure to sucrose during adolescence can heighten the reinforcing effects of cocaine. Furthermore, they identify the TGF-beta pathway and Smad3 as playing a key role in mediating enduring and long-lasting adaptations that contribute to sucrose-induced susceptibility to cocaine. Taken together, these results have important implications for development and suggest that adolescent sucrose exposure may persistently enhance the susceptibility to substance abuse.</p>\",\"PeriodicalId\":7289,\"journal\":{\"name\":\"Addiction Biology\",\"volume\":\"28 12\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/adb.13346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Addiction Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/adb.13346\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/adb.13346","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Adolescent exposure to sucrose increases cocaine-mediated behaviours in adulthood via Smad3
Adolescence, a critical period of developmental period, is marked by neurobiological changes influenced by environmental factors. Here, we show how exposure to sucrose, which is ubiquitously available in modern diets, results in changes in behavioural response to cocaine as an adult. Rats were given daily access to either 10% sucrose or water during the adolescent period (PND28–42). Following this period, rats are left undisturbed until they reach adulthood. In adulthood, rats were tested for (i) acquisition of a low dose of cocaine, (ii) progressive ratio (PR) test, and (iii) resistance to punished cocaine taking. Sucrose exposure resulted in significant alterations in all behavioural measures. To determine the neurobiological mechanisms leading to such behavioural adaptations, we find that adolescent sucrose exposure results in an upregulation of the transcription factor Smad3 in the nucleus accumbens (NAc) when compared with water-exposed controls. Transiently blocking the active form of this transcription factor (HSV-dnSmad3) during adolescence mitigated the enhanced cocaine vulnerability-like behaviours observed in adulthood. These findings suggest that prior exposure to sucrose during adolescence can heighten the reinforcing effects of cocaine. Furthermore, they identify the TGF-beta pathway and Smad3 as playing a key role in mediating enduring and long-lasting adaptations that contribute to sucrose-induced susceptibility to cocaine. Taken together, these results have important implications for development and suggest that adolescent sucrose exposure may persistently enhance the susceptibility to substance abuse.
期刊介绍:
Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields.
Addiction Biology includes peer-reviewed original research reports and reviews.
Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.