基于人机交互的机器人拆卸信息提取

IF 3.7 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Computer Integrated Manufacturing Pub Date : 2023-09-21 DOI:10.1080/0951192x.2023.2257667
Joao Paulo Jacomini Prioli, Jeremy L. Rickli
{"title":"基于人机交互的机器人拆卸信息提取","authors":"Joao Paulo Jacomini Prioli, Jeremy L. Rickli","doi":"10.1080/0951192x.2023.2257667","DOIUrl":null,"url":null,"abstract":"ABSTRACTDisassembly of end-of-use products is critical to the economic feasibility of circular feedstock, reusing, recycling and remanufacturing loops. High-volume disassembly operations are constrained by disassembly complexity and product variability. The capability to buffer against timing, quantity and quality uncertainties of end-of-use products impacts the efficiency and profitability of demanufacturing systems. To achieve a competitive operation in the manufacturing life-cycle, disassembly systems need automated lines, however, the unpredictability of core supply challenges automation adaptability. Disassembly robot trajectories that are programmed manually or controlled by vision systems can be time intensive and subject to variability in lighting conditions and image recognition models. Alternatively, this paper presents a novel human-robot disassembly framework to systematically extract and generate robot trajectories derived from human-collaborative robot (cobot) disassembly. The collaborative training station proposed classifies trajectory segments and then adjusts trajectories to station-specific robots in a high-volume disassembly line. Virtual and physical collaborative disassembly case studies are presented and discussed. Results demonstrate the effectiveness of the disassembly data extraction method but indicate a disparity between the expected and ideal disassembly trajectories due to variability from human handling, which is further discussed in this paper.KEYWORDS: Disassemblycollaborative robotsremanufacturingsystem framework Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Critical Materials Institute in collaboration with Oak Ridge National Laboratory [FA-3.3.11].","PeriodicalId":13907,"journal":{"name":"International Journal of Computer Integrated Manufacturing","volume":"139 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-robot interaction for extraction of robotic disassembly information\",\"authors\":\"Joao Paulo Jacomini Prioli, Jeremy L. Rickli\",\"doi\":\"10.1080/0951192x.2023.2257667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTDisassembly of end-of-use products is critical to the economic feasibility of circular feedstock, reusing, recycling and remanufacturing loops. High-volume disassembly operations are constrained by disassembly complexity and product variability. The capability to buffer against timing, quantity and quality uncertainties of end-of-use products impacts the efficiency and profitability of demanufacturing systems. To achieve a competitive operation in the manufacturing life-cycle, disassembly systems need automated lines, however, the unpredictability of core supply challenges automation adaptability. Disassembly robot trajectories that are programmed manually or controlled by vision systems can be time intensive and subject to variability in lighting conditions and image recognition models. Alternatively, this paper presents a novel human-robot disassembly framework to systematically extract and generate robot trajectories derived from human-collaborative robot (cobot) disassembly. The collaborative training station proposed classifies trajectory segments and then adjusts trajectories to station-specific robots in a high-volume disassembly line. Virtual and physical collaborative disassembly case studies are presented and discussed. Results demonstrate the effectiveness of the disassembly data extraction method but indicate a disparity between the expected and ideal disassembly trajectories due to variability from human handling, which is further discussed in this paper.KEYWORDS: Disassemblycollaborative robotsremanufacturingsystem framework Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Critical Materials Institute in collaboration with Oak Ridge National Laboratory [FA-3.3.11].\",\"PeriodicalId\":13907,\"journal\":{\"name\":\"International Journal of Computer Integrated Manufacturing\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Integrated Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0951192x.2023.2257667\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Integrated Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0951192x.2023.2257667","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要报废产品的拆解对循环原料循环、再利用循环、再制造循环的经济可行性至关重要。大批量拆卸操作受到拆卸复杂性和产品可变性的限制。对时间、数量和质量的不确定性的缓冲能力影响着拆解系统的效率和盈利能力。为了在制造生命周期中实现竞争性操作,拆卸系统需要自动化生产线,然而,核心供应的不可预测性对自动化适应性提出了挑战。手动编程或由视觉系统控制的拆卸机器人轨迹可能是时间密集型的,并且受到照明条件和图像识别模型的变化的影响。另外,本文提出了一种新的人机拆卸框架,用于系统地提取和生成由人机协作机器人(cobot)拆卸导出的机器人轨迹。提出的协同训练站对轨迹段进行分类,然后对大批量拆解线上特定工位的机器人调整轨迹。提出并讨论了虚拟和物理协同拆卸的案例研究。结果证明了拆卸数据提取方法的有效性,但由于人为操作的可变性,期望和理想的拆卸轨迹之间存在差异,本文将进一步讨论这一点。关键词:拆卸协作机器人再制造系统框架披露声明作者未报告潜在利益冲突。本研究由关键材料研究所与橡树岭国家实验室合作支持[FA-3.3.11]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-robot interaction for extraction of robotic disassembly information
ABSTRACTDisassembly of end-of-use products is critical to the economic feasibility of circular feedstock, reusing, recycling and remanufacturing loops. High-volume disassembly operations are constrained by disassembly complexity and product variability. The capability to buffer against timing, quantity and quality uncertainties of end-of-use products impacts the efficiency and profitability of demanufacturing systems. To achieve a competitive operation in the manufacturing life-cycle, disassembly systems need automated lines, however, the unpredictability of core supply challenges automation adaptability. Disassembly robot trajectories that are programmed manually or controlled by vision systems can be time intensive and subject to variability in lighting conditions and image recognition models. Alternatively, this paper presents a novel human-robot disassembly framework to systematically extract and generate robot trajectories derived from human-collaborative robot (cobot) disassembly. The collaborative training station proposed classifies trajectory segments and then adjusts trajectories to station-specific robots in a high-volume disassembly line. Virtual and physical collaborative disassembly case studies are presented and discussed. Results demonstrate the effectiveness of the disassembly data extraction method but indicate a disparity between the expected and ideal disassembly trajectories due to variability from human handling, which is further discussed in this paper.KEYWORDS: Disassemblycollaborative robotsremanufacturingsystem framework Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Critical Materials Institute in collaboration with Oak Ridge National Laboratory [FA-3.3.11].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.00
自引率
9.80%
发文量
73
审稿时长
10 months
期刊介绍: International Journal of Computer Integrated Manufacturing (IJCIM) reports new research in theory and applications of computer integrated manufacturing. The scope spans mechanical and manufacturing engineering, software and computer engineering as well as automation and control engineering with a particular focus on today’s data driven manufacturing. Terms such as industry 4.0, intelligent manufacturing, digital manufacturing and cyber-physical manufacturing systems are now used to identify the area of knowledge that IJCIM has supported and shaped in its history of more than 30 years. IJCIM continues to grow and has become a key forum for academics and industrial researchers to exchange information and ideas. In response to this interest, IJCIM is now published monthly, enabling the editors to target topical special issues; topics as diverse as digital twins, transdisciplinary engineering, cloud manufacturing, deep learning for manufacturing, service-oriented architectures, dematerialized manufacturing systems, wireless manufacturing and digital enterprise technologies to name a few.
期刊最新文献
Integration of extended reality and CAE in the context of industry 4.0 Real-time tool condition monitoring with the internet of things and machine learning algorithms Flexible automation and intelligent manufacturing highlights: special issue editorial State of the art and future directions of digital twin-enabled smart assembly automation in discrete manufacturing industries Tool wear prediction method based on dual-attention mechanism network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1