{"title":"激波冲击下超音速湍流膨胀流的壁面热流密度","authors":"Fulin Tong, Junyi Duan, Xianxu Yuan, Xinliang Li","doi":"10.1080/14685248.2023.2260777","DOIUrl":null,"url":null,"abstract":"AbstractWe perform direct numerical simulations to investigate the characteristics of wall heat flux (WHF) in the interaction of an oblique shock wave at an angle of 33.2° and free-stream Mach number M∞ = 2.25 impinging on supersonic turbulent expansion corners with deflection angles of 0o (flat plate), 6o and 12o. The effect of the expansion on the WHF characteristics is analysed by comparing it to the interaction with the flat plate under the same flow conditions and a fixed shock impingement point. In the post-expansion region, the decreased mean WHF is found to collapse onto the flat plate case when scaled with the mean wall pressure. The statistical properties of the WHF fluctuations, including probability density function, frequency spectra, and space–time correlations, are comparatively analysed. The expansion causes an increase in the occurrence probability of negative extreme events, an enhancement of high-frequency energy, and an inhibition of intermediate-frequency energy. The increased expansion angle also results in a faster recovery of characteristic spanwise length scales and an increase in convection velocity. We use the mean WHF decomposition method in conjunction with bidimensional empirical mode decomposition to quantitatively analyse the impact of expansion on scale contributions. It is demonstrated that the presence of the expansion corner has no significant impact on the decomposed results, but it significantly reduces the contribution associated with outer large-scale structures.KEYWORDS: Expansion cornerturbulent boundary layershock impingementwall heat flux Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was co-supported by the National Key R&D Program of China (No. 2019YFA0405300) and the National Natural Science Foundation of China (No. 11972356).","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"71 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wall heat flux in supersonic turbulent expansion flow with shock impingement\",\"authors\":\"Fulin Tong, Junyi Duan, Xianxu Yuan, Xinliang Li\",\"doi\":\"10.1080/14685248.2023.2260777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractWe perform direct numerical simulations to investigate the characteristics of wall heat flux (WHF) in the interaction of an oblique shock wave at an angle of 33.2° and free-stream Mach number M∞ = 2.25 impinging on supersonic turbulent expansion corners with deflection angles of 0o (flat plate), 6o and 12o. The effect of the expansion on the WHF characteristics is analysed by comparing it to the interaction with the flat plate under the same flow conditions and a fixed shock impingement point. In the post-expansion region, the decreased mean WHF is found to collapse onto the flat plate case when scaled with the mean wall pressure. The statistical properties of the WHF fluctuations, including probability density function, frequency spectra, and space–time correlations, are comparatively analysed. The expansion causes an increase in the occurrence probability of negative extreme events, an enhancement of high-frequency energy, and an inhibition of intermediate-frequency energy. The increased expansion angle also results in a faster recovery of characteristic spanwise length scales and an increase in convection velocity. We use the mean WHF decomposition method in conjunction with bidimensional empirical mode decomposition to quantitatively analyse the impact of expansion on scale contributions. It is demonstrated that the presence of the expansion corner has no significant impact on the decomposed results, but it significantly reduces the contribution associated with outer large-scale structures.KEYWORDS: Expansion cornerturbulent boundary layershock impingementwall heat flux Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was co-supported by the National Key R&D Program of China (No. 2019YFA0405300) and the National Natural Science Foundation of China (No. 11972356).\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2023.2260777\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2260777","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Wall heat flux in supersonic turbulent expansion flow with shock impingement
AbstractWe perform direct numerical simulations to investigate the characteristics of wall heat flux (WHF) in the interaction of an oblique shock wave at an angle of 33.2° and free-stream Mach number M∞ = 2.25 impinging on supersonic turbulent expansion corners with deflection angles of 0o (flat plate), 6o and 12o. The effect of the expansion on the WHF characteristics is analysed by comparing it to the interaction with the flat plate under the same flow conditions and a fixed shock impingement point. In the post-expansion region, the decreased mean WHF is found to collapse onto the flat plate case when scaled with the mean wall pressure. The statistical properties of the WHF fluctuations, including probability density function, frequency spectra, and space–time correlations, are comparatively analysed. The expansion causes an increase in the occurrence probability of negative extreme events, an enhancement of high-frequency energy, and an inhibition of intermediate-frequency energy. The increased expansion angle also results in a faster recovery of characteristic spanwise length scales and an increase in convection velocity. We use the mean WHF decomposition method in conjunction with bidimensional empirical mode decomposition to quantitatively analyse the impact of expansion on scale contributions. It is demonstrated that the presence of the expansion corner has no significant impact on the decomposed results, but it significantly reduces the contribution associated with outer large-scale structures.KEYWORDS: Expansion cornerturbulent boundary layershock impingementwall heat flux Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis study was co-supported by the National Key R&D Program of China (No. 2019YFA0405300) and the National Natural Science Foundation of China (No. 11972356).
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.